BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2256961)

  • 1. The molecular basis of GTP-binding protein interaction with receptors.
    Hamm HE; Rarick H; Mazzoni M; Malinski J; Suh KH
    Biochem Soc Symp; 1990; 56():35-44. PubMed ID: 2256961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin-interacting surface of the transducin gamma subunit.
    Kisselev OG; Downs MA
    Biochemistry; 2006 Aug; 45(31):9386-92. PubMed ID: 16878973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A; Schroder K; Fischer T; Hofmann KP
    J Biol Chem; 2000 Dec; 275(48):37679-85. PubMed ID: 10969086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three cytoplasmic loops of rhodopsin interact with transducin.
    König B; Arendt A; McDowell JH; Kahlert M; Hargrave PA; Hofmann KP
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6878-82. PubMed ID: 2780545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR structure of a receptor-bound G-protein peptide.
    Dratz EA; Furstenau JE; Lambert CG; Thireault DL; Rarick H; Schepers T; Pakhlevaniants S; Hamm HE
    Nature; 1993 May; 363(6426):276-81. PubMed ID: 8487866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-protein alpha and beta-gamma subunits interact with conformationally distinct signaling states of rhodopsin.
    Downs MA; Arimoto R; Marshall GR; Kisselev OG
    Vision Res; 2006 Dec; 46(27):4442-8. PubMed ID: 16989885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits.
    Ernst OP; Meyer CK; Marin EP; Henklein P; Fu WY; Sakmar TP; Hofmann KP
    J Biol Chem; 2000 Jan; 275(3):1937-43. PubMed ID: 10636895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of transducin with light-activated rhodopsin protects It from proteolytic digestion by trypsin.
    Mazzoni MR; Hamm HE
    J Biol Chem; 1996 Nov; 271(47):30034-40. PubMed ID: 8939950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Displacement of rhodopsin by GDP from three-loop interaction with transducin depends critically on the diphosphate beta-position.
    Kahlert M; König B; Hofmann KP
    J Biol Chem; 1990 Nov; 265(31):18928-32. PubMed ID: 2229054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural requirements for the stabilization of metarhodopsin II by the C terminus of the alpha subunit of transducin.
    Aris L; Gilchrist A; Rens-Domiano S; Meyer C; Schatz PJ; Dratz EA; Hamm HE
    J Biol Chem; 2001 Jan; 276(4):2333-9. PubMed ID: 11018024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM; Abdulaev NG; Marino JP; Ridge KD
    Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin.
    Yoshida T; Willardson BM; Wilkins JF; Jensen GJ; Thornton BD; Bitensky MW
    J Biol Chem; 1994 Sep; 269(39):24050-7. PubMed ID: 7929057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-step mechanism of interaction of rhodopsin intermediates with the C-terminal region of the transducin alpha-subunit.
    Morizumi T; Imai H; Shichida Y
    J Biochem; 2003 Aug; 134(2):259-67. PubMed ID: 12966076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction network of rhodopsin involving the heterotrimeric G-protein transducin and the monomeric GTPase Rac1 is determined by distinct binding processes.
    Köster M; Dell'Orco D; Koch KW
    FEBS J; 2014 Dec; 281(23):5175-85. PubMed ID: 25243418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis.
    Herrmann R; Heck M; Henklein P; Kleuss C; Wray V; Hofmann KP; Ernst OP
    Vision Res; 2006 Dec; 46(27):4582-93. PubMed ID: 17011013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the mechanism of rhodopsin-catalyzed transducin activation.
    Natochin M; Moussaif M; Artemyev NO
    J Neurochem; 2001 Apr; 77(1):202-10. PubMed ID: 11279276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative binding of the retinal rod G-protein, transducin, to light-activated rhodopsin.
    Willardson BM; Pou B; Yoshida T; Bitensky MW
    J Biol Chem; 1993 Mar; 268(9):6371-82. PubMed ID: 8454608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing rhodopsin-transducin interactions by surface modification and mass spectrometry.
    Wang X; Kim SH; Ablonczy Z; Crouch RK; Knapp DR
    Biochemistry; 2004 Sep; 43(35):11153-62. PubMed ID: 15366925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of rhodopsin with the G-protein, transducin.
    Hargrave PA; Hamm HE; Hofmann KP
    Bioessays; 1993 Jan; 15(1):43-50. PubMed ID: 8466475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit.
    Hamm HE; Deretic D; Arendt A; Hargrave PA; Koenig B; Hofmann KP
    Science; 1988 Aug; 241(4867):832-5. PubMed ID: 3136547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.