These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 22569643)

  • 1. The ins and outs of algal metal transport.
    Blaby-Haas CE; Merchant SS
    Biochim Biophys Acta; 2012 Sep; 1823(9):1531-52. PubMed ID: 22569643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metal transporter CrNRAMP1 is involved in zinc and cobalt transports in Chlamydomonas reinhardtii.
    Chang P; Yin H; Imanaka T; Igarashi Y; Li N; Luo F
    Biochem Biophys Res Commun; 2020 Mar; 523(4):880-886. PubMed ID: 31955886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cation-regulated and proton gradient-dependent cation transporter from Chlamydomonas reinhardtii has a role in calcium and sodium homeostasis.
    Pittman JK; Edmond C; Sunderland PA; Bray CM
    J Biol Chem; 2009 Jan; 284(1):525-533. PubMed ID: 19001368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-genomic analysis of the cation diffusion facilitator transporters from algae.
    Ibuot A; Dean AP; Pittman JK
    Metallomics; 2020 Apr; 12(4):617-630. PubMed ID: 32195517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii.
    La Fontaine S; Quinn JM; Nakamoto SS; Page MD; Göhre V; Moseley JL; Kropat J; Merchant S
    Eukaryot Cell; 2002 Oct; 1(5):736-57. PubMed ID: 12455693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divalent metal transport in the green microalga Chlamydomonas reinhardtii is mediated by a protein similar to prokaryotic Nramp homologues.
    Rosakis A; Köster W
    Biometals; 2005 Feb; 18(1):107-20. PubMed ID: 15865416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.
    Wang Y; Cheng ZZ; Chen X; Zheng Q; Yang ZM
    Plant Sci; 2015 Nov; 240():120-9. PubMed ID: 26475193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation.
    Page MD; Kropat J; Hamel PP; Merchant SS
    Plant Cell; 2009 Mar; 21(3):928-43. PubMed ID: 19318609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life.
    Haas CE; Rodionov DA; Kropat J; Malasarn D; Merchant SS; de Crécy-Lagard V
    BMC Genomics; 2009 Oct; 10():470. PubMed ID: 19822009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane.
    Terzulli A; Kosman DJ
    Eukaryot Cell; 2010 May; 9(5):815-26. PubMed ID: 20348389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of a multicopper oxidase in iron uptake by the green algae Chlamydomonas reinhardtii.
    Herbik A; Bölling C; Buckhout TJ
    Plant Physiol; 2002 Dec; 130(4):2039-48. PubMed ID: 12481087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The light-harvesting complex of photosystem I in Chlamydomonas reinhardtii: protein composition, gene structures and phylogenic implications.
    Tokutsu R; Teramoto H; Takahashi Y; Ono TA; Minagawa J
    Plant Cell Physiol; 2004 Feb; 45(2):138-45. PubMed ID: 14988484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chlamydomonas reinhardtii.
    Malasarn D; Kropat J; Hsieh SI; Finazzi G; Casero D; Loo JA; Pellegrini M; Wollman FA; Merchant SS
    J Biol Chem; 2013 Apr; 288(15):10672-83. PubMed ID: 23439652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae.
    Hanikenne M; Krämer U; Demoulin V; Baurain D
    Plant Physiol; 2005 Feb; 137(2):428-46. PubMed ID: 15710683
    [No Abstract]   [Full Text] [Related]  

  • 15. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii.
    Allen MD; del Campo JA; Kropat J; Merchant SS
    Eukaryot Cell; 2007 Oct; 6(10):1841-52. PubMed ID: 17660359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components.
    Atkinson N; Feike D; Mackinder LC; Meyer MT; Griffiths H; Jonikas MC; Smith AM; McCormick AJ
    Plant Biotechnol J; 2016 May; 14(5):1302-15. PubMed ID: 26538195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oleosin of subcellular lipid droplets evolved in green algae.
    Huang NL; Huang MD; Chen TL; Huang AH
    Plant Physiol; 2013 Apr; 161(4):1862-74. PubMed ID: 23391579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The zinc homeostasis network of land plants.
    Sinclair SA; Krämer U
    Biochim Biophys Acta; 2012 Sep; 1823(9):1553-67. PubMed ID: 22626733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii.
    Teramoto H; Ono T; Minagawa J
    Plant Cell Physiol; 2001 Aug; 42(8):849-56. PubMed ID: 11522911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomic analysis of retrogene repertoire in two green algae Volvox carteri and Chlamydomonas reinhardtii.
    Jąkalski M; Takeshita K; Deblieck M; Koyanagi KO; Makałowska I; Watanabe H; Makałowski W
    Biol Direct; 2016 Aug; 11():35. PubMed ID: 27487948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.