BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22569777)

  • 1. A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening.
    Jung DW; Oh ES; Park SH; Chang YT; Kim CH; Choi SY; Williams DR
    Mol Biosyst; 2012 Jul; 8(7):1930-9. PubMed ID: 22569777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and cost-effective xenograft hepatocellular carcinoma model in Zebrafish for drug testing.
    Tonon F; Zennaro C; Dapas B; Carraro M; Mariotti M; Grassi G
    Int J Pharm; 2016 Dec; 515(1-2):583-591. PubMed ID: 27989824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian tumor xenografts induce neovascularization in zebrafish embryos.
    Nicoli S; Ribatti D; Cotelli F; Presta M
    Cancer Res; 2007 Apr; 67(7):2927-31. PubMed ID: 17409396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a vestibular schwannoma xenograft zebrafish model for in vivo antitumor drug screening.
    Lee HJ; Yang YJ; Jeong S; Lee JD; Choi SY; Jung DW; Moon IS
    Laryngoscope; 2016 Dec; 126(12):E409-E415. PubMed ID: 27242319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. U0126 inhibits pancreatic cancer progression via the KRAS signaling pathway in a zebrafish xenotransplantation model.
    Guo M; Wei H; Hu J; Sun S; Long J; Wang X
    Oncol Rep; 2015 Aug; 34(2):699-706. PubMed ID: 26035715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voreloxin, formerly SNS-595, has potent activity against a broad panel of cancer cell lines and in vivo tumor models.
    Hoch U; Lynch J; Sato Y; Kashimoto S; Kajikawa F; Furutani Y; Silverman JA
    Cancer Chemother Pharmacol; 2009 Jun; 64(1):53-65. PubMed ID: 18931998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of anti-cancer chemical compounds using Xenopus embryos.
    Tanaka M; Kuriyama S; Itoh G; Kohyama A; Iwabuchi Y; Shibata H; Yashiro M; Aiba N
    Cancer Sci; 2016 Jun; 107(6):803-11. PubMed ID: 27019404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The zebrafish/tumor xenograft angiogenesis assay.
    Nicoli S; Presta M
    Nat Protoc; 2007; 2(11):2918-23. PubMed ID: 18007628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish Xenografts for Drug Discovery and Personalized Medicine.
    Xiao J; Glasgow E; Agarwal S
    Trends Cancer; 2020 Jul; 6(7):569-579. PubMed ID: 32312681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid identification of antimicrometastases drugs using integrated model systems with two dimensional monolayer, three dimensional spheroids, and zebrafish xenotransplantation tumors.
    Fu A; Peh YM; Ngan W; Wei N; Luo KQ
    Biotechnol Bioeng; 2018 Nov; 115(11):2828-2843. PubMed ID: 30102771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetic profile of the microtubule stabilizer patupilone in tumor-bearing rodents and comparison of anti-cancer activity with other MTS in vitro and in vivo.
    O'Reilly T; Wartmann M; Brueggen J; Allegrini PR; Floersheimer A; Maira M; McSheehy PM
    Cancer Chemother Pharmacol; 2008 Nov; 62(6):1045-54. PubMed ID: 18301895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk.
    Tobia C; Gariano G; De Sena G; Presta M
    Biochim Biophys Acta; 2013 Sep; 1832(9):1371-7. PubMed ID: 23357577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of inhibitor of nuclear factor-kappaB phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models.
    Mabuchi S; Ohmichi M; Nishio Y; Hayasaka T; Kimura A; Ohta T; Kawagoe J; Takahashi K; Yada-Hashimoto N; Seino-Noda H; Sakata M; Motoyama T; Kurachi H; Testa JR; Tasaka K; Murata Y
    Clin Cancer Res; 2004 Nov; 10(22):7645-54. PubMed ID: 15569997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a Novel Embryo-Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics.
    Wehmas LC; Tanguay RL; Punnoose A; Greenwood JA
    Zebrafish; 2016 Aug; 13(4):317-29. PubMed ID: 27158859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiangiogenic cancer drug using the zebrafish model.
    Santoro MM
    Arterioscler Thromb Vasc Biol; 2014 Sep; 34(9):1846-53. PubMed ID: 24903092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTEN activation sensitizes breast cancer to PI3-kinase inhibitor through the β-catenin signaling pathway.
    Ren Y; Zhou X; Qi Y; Li G; Mei M; Yao Z
    Oncol Rep; 2012 Sep; 28(3):943-8. PubMed ID: 22710837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity.
    Garlich JR; De P; Dey N; Su JD; Peng X; Miller A; Murali R; Lu Y; Mills GB; Kundra V; Shu HK; Peng Q; Durden DL
    Cancer Res; 2008 Jan; 68(1):206-15. PubMed ID: 18172313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zebrafish xenograft models of cancer and metastasis for drug discovery.
    Brown HK; Schiavone K; Tazzyman S; Heymann D; Chico TJ
    Expert Opin Drug Discov; 2017 Apr; 12(4):379-389. PubMed ID: 28277839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool.
    Cabezas-Sainz P; Guerra-Varela J; Carreira MJ; Mariscal J; Roel M; Rubiolo JA; Sciara AA; Abal M; Botana LM; López R; Sánchez L
    BMC Cancer; 2018 Jan; 18(1):3. PubMed ID: 29291719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models.
    Hu L; Hofmann J; Lu Y; Mills GB; Jaffe RB
    Cancer Res; 2002 Feb; 62(4):1087-92. PubMed ID: 11861387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.