These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 22570080)
1. Characterization of adenosine receptor in its native environment: insights from molecular dynamics simulations of palmitoylated/glycosylated, membrane-integrated human A(2B) adenosine receptor. Mansourian M; Madadkar-Sobhani A; Mahnam K; Fassihi A; Saghaie L J Mol Model; 2012 Sep; 18(9):4309-24. PubMed ID: 22570080 [TBL] [Abstract][Full Text] [Related]
2. Insights into binding modes of adenosine A(2B) antagonists with ligand-based and receptor-based methods. Cheng F; Xu Z; Liu G; Tang Y Eur J Med Chem; 2010 Aug; 45(8):3459-71. PubMed ID: 20537438 [TBL] [Abstract][Full Text] [Related]
3. A novel identification approach for discovery of 5-HydroxyTriptamine 2A antagonists: combination of 2D/3D similarity screening, molecular docking and molecular dynamics. Kumar R; Jade D; Gupta D J Biomol Struct Dyn; 2019 Mar; 37(4):931-943. PubMed ID: 29468945 [TBL] [Abstract][Full Text] [Related]
4. Molecular modeling and molecular dynamics simulation of the human A2B adenosine receptor. The study of the possible binding modes of the A2B receptor antagonists. Ivanov AA; Baskin II; Palyulin VA; Piccagli L; Baraldi PG; Zefirov NS J Med Chem; 2005 Nov; 48(22):6813-20. PubMed ID: 16250640 [TBL] [Abstract][Full Text] [Related]
5. Integrating Pharmacophore into Membrane Molecular Dynamics Simulations to Improve Homology Modeling of G Protein-coupled Receptors with Ligand Selectivity: A2A Adenosine Receptor as an Example. Zeng L; Guan M; Jin H; Liu Z; Zhang L Chem Biol Drug Des; 2015 Dec; 86(6):1438-50. PubMed ID: 26072970 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances of In-Silico Modeling of Potent Antagonists for the Adenosine Receptors. Samanta PN; Kar S; Leszczynski J Curr Pharm Des; 2019; 25(7):750-773. PubMed ID: 30836910 [TBL] [Abstract][Full Text] [Related]
7. Homology modeling of human CCR5 and analysis of its binding properties through molecular docking and molecular dynamics simulation. Shahlaei M; Madadkar-Sobhani A; Mahnam K; Fassihi A; Saghaie L; Mansourian M Biochim Biophys Acta; 2011 Mar; 1808(3):802-17. PubMed ID: 21167131 [TBL] [Abstract][Full Text] [Related]
8. Discovery of Novel Adenosine Receptor Antagonists through a Combined Structure- and Ligand-Based Approach Followed by Molecular Dynamics Investigation of Ligand Binding Mode. Lagarias P; Vrontaki E; Lambrinidis G; Stamatis D; Convertino M; Ortore G; Mavromoustakos T; Klotz KN; Kolocouris A J Chem Inf Model; 2018 Apr; 58(4):794-815. PubMed ID: 29485875 [TBL] [Abstract][Full Text] [Related]
9. GPR17: molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors. Parravicini C; Ranghino G; Abbracchio MP; Fantucci P BMC Bioinformatics; 2008 Jun; 9():263. PubMed ID: 18533035 [TBL] [Abstract][Full Text] [Related]
10. Exploring a model of a chemokine receptor/ligand complex in an explicit membrane environment by molecular dynamics simulation: the human CCR1 receptor. Shahlaei M; Madadkar-Sobhani A; Fassihi A; Saghaie L J Chem Inf Model; 2011 Oct; 51(10):2717-30. PubMed ID: 21910472 [TBL] [Abstract][Full Text] [Related]
11. Bridging molecular docking to membrane molecular dynamics to investigate GPCR-ligand recognition: the human A₂A adenosine receptor as a key study. Sabbadin D; Ciancetta A; Moro S J Chem Inf Model; 2014 Jan; 54(1):169-83. PubMed ID: 24359090 [TBL] [Abstract][Full Text] [Related]
12. Insights into the conformational perturbations of novel agonists with β3-adrenergic receptor using molecular dynamics simulations. Tewatia P; Agrawal N; Gaur M; Sahi S Biochimie; 2014 Jun; 101():168-82. PubMed ID: 24508605 [TBL] [Abstract][Full Text] [Related]
13. Identification of new potent A Wei Y; Wang M; Li Y; Hong Z; Li D; Lin J Eur J Med Chem; 2020 Feb; 187():111936. PubMed ID: 31855793 [TBL] [Abstract][Full Text] [Related]
14. Homology modeling of the human 5-HT1A, 5-HT 2A, D1, and D2 receptors: model refinement with molecular dynamics simulations and docking evaluation. Yap BK; Buckle MJ; Doughty SW J Mol Model; 2012 Aug; 18(8):3639-55. PubMed ID: 22354276 [TBL] [Abstract][Full Text] [Related]
15. Molecular recognition in purinergic receptors. 1. A comprehensive computational study of the h-P2Y1-receptor. Major DT; Fischer B J Med Chem; 2004 Aug; 47(18):4391-404. PubMed ID: 15317452 [TBL] [Abstract][Full Text] [Related]
16. Medicinal chemistry and pharmacology of A2B adenosine receptors. Volpini R; Costanzi S; Vittori S; Cristalli G; Klotz KN Curr Top Med Chem; 2003; 3(4):427-43. PubMed ID: 12570760 [TBL] [Abstract][Full Text] [Related]
17. Substituted 4-phenylthiazoles: Development of potent and selective A Abdelrahman A; Yerande SG; Namasivayam V; Klapschinski TA; Alnouri MW; El-Tayeb A; Müller CE Eur J Med Chem; 2020 Jan; 186():111879. PubMed ID: 31780082 [TBL] [Abstract][Full Text] [Related]
18. Reciprocal modulation of anti-IgE induced histamine release from human mast cells by A₁ and A(2B) adenosine receptors. Yip KH; Lau HY; Wise H Br J Pharmacol; 2011 Sep; 164(2b):807-19. PubMed ID: 21506953 [TBL] [Abstract][Full Text] [Related]
19. The third intracellular loop of alpha 2-adrenergic receptors determines subtype specificity of arrestin interaction. DeGraff JL; Gurevich VV; Benovic JL J Biol Chem; 2002 Nov; 277(45):43247-52. PubMed ID: 12205092 [TBL] [Abstract][Full Text] [Related]
20. Effect of hydrophobic and hydrogen bonding interactions on the potency of ß-alanine analogs of G-protein coupled glucagon receptor inhibitors. Venugopal PP; Das BK; Soorya E; Chakraborty D Proteins; 2020 Feb; 88(2):327-344. PubMed ID: 31443129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]