These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22570143)

  • 1. Modeling and hardware implementation of an amoeba-like cellular automaton.
    Tsompanas MA; Sirakoulis GCh
    Bioinspir Biomim; 2012 Sep; 7(3):036013. PubMed ID: 22570143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould.
    Tsompanas MA; Sirakoulis GCh; Adamatzky AI
    IEEE Trans Cybern; 2015 Sep; 45(9):1887-99. PubMed ID: 25438333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.
    Umedachi T; Idei R; Ito K; Ishiguro A
    Bioinspir Biomim; 2013 Sep; 8(3):035001. PubMed ID: 23981517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of self-organized amoeboid movement in a multi-agent approximation of Physarum polycephalum.
    Jones J; Adamatzky A
    Bioinspir Biomim; 2012 Mar; 7(1):016009. PubMed ID: 22278961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic analysis of the Braitenberg vehicle 2b for point-like stimulus sources.
    Rañó I
    Bioinspir Biomim; 2012 Sep; 7(3):036015. PubMed ID: 22585337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rules for biologically inspired adaptive network design.
    Tero A; Takagi S; Saigusa T; Ito K; Bebber DP; Fricker MD; Yumiki K; Kobayashi R; Nakagaki T
    Science; 2010 Jan; 327(5964):439-42. PubMed ID: 20093467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traffic optimization in railroad networks using an algorithm mimicking an amoeba-like organism, Physarum plasmodium.
    Watanabe S; Tero A; Takamatsu A; Nakagaki T
    Biosystems; 2011 Sep; 105(3):225-32. PubMed ID: 21620930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the applicability of the decentralized control mechanism extracted from the true slime mold: a robotic case study with a serpentine robot.
    Sato T; Kano T; Ishiguro A
    Bioinspir Biomim; 2011 Jun; 6(2):026006. PubMed ID: 21502703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired algorithm for autonomous sensor-driven guidance in turbulent chemical plumes.
    Webster DR; Volyanskyy KY; Weissburg MJ
    Bioinspir Biomim; 2012 Sep; 7(3):036023. PubMed ID: 22728917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solving the Towers of Hanoi - how an amoeboid organism efficiently constructs transport networks.
    Reid CR; Beekman M
    J Exp Biol; 2013 May; 216(Pt 9):1546-51. PubMed ID: 23307798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Route 20, Autobahn 7, and Slime Mold: Approximating the Longest Roads in USA and Germany With Slime Mold on 3-D Terrains.
    Adamatzky AI
    IEEE Trans Cybern; 2014 Jan; 44(1):126-36. PubMed ID: 23757537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flocking algorithm for autonomous flying robots.
    Virágh C; Vásárhelyi G; Tarcai N; Szörényi T; Somorjai G; Nepusz T; Vicsek T
    Bioinspir Biomim; 2014 Jun; 9(2):025012. PubMed ID: 24852272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial annelid robot driven by soft actuators.
    Jung K; Koo JC; Nam JD; Lee YK; Choi HR
    Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model for adaptive transport network in path finding by true slime mold.
    Tero A; Kobayashi R; Nakagaki T
    J Theor Biol; 2007 Feb; 244(4):553-64. PubMed ID: 17069858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond input-output computings: error-driven emergence with parallel non-distributed slime mold computer.
    Aono M; Gunji YP
    Biosystems; 2003 Oct; 71(3):257-87. PubMed ID: 14563567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rebuilding Iberian motorways with slime mould.
    Adamatzky A; Alonso-Sanz R
    Biosystems; 2011 Jul; 105(1):89-100. PubMed ID: 21530610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material approximation of data smoothing and spline curves inspired by slime mould.
    Jones J; Adamatzky A
    Bioinspir Biomim; 2014 Sep; 9(3):036016. PubMed ID: 24979075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kanizsa illusory contours appearing in the plasmodium pattern of Physarum polycephalum.
    Tani I; Yamachiyo M; Shirakawa T; Gunji YP
    Front Cell Infect Microbiol; 2014; 4():10. PubMed ID: 24616883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.