BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22570271)

  • 1. The sensitivity of an immature vestibular system to altered gravity.
    Gabriel M; Frippiat JP; Frey H; Horn ER
    J Exp Zool A Ecol Genet Physiol; 2012 Jul; 317(6):333-46. PubMed ID: 22570271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Critical periods" in vestibular development or adaptation of gravity sensory systems to altered gravitational conditions?
    Horn ER
    Arch Ital Biol; 2004 May; 142(3):155-74. PubMed ID: 15260375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An age-dependent sensitivity of the roll-induced vestibuloocular reflex to hypergravity exposure of several days in an amphibian (Xenopus laevis).
    Sebastian CE; Pfau K; Horn ER
    Acta Astronaut; 1998; 42(1-8):419-30. PubMed ID: 11541625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered gravitational forces affect the development of the static vestibuloocular reflex in fish (Oreochromis mossambicus).
    Sebastian C; Esseling K; Horn E
    J Neurobiol; 2001 Jan; 46(1):59-72. PubMed ID: 11108616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravity-related critical periods in vestibular and tail development of Xenopus laevis.
    Horn ER; Gabriel M
    J Exp Zool A Ecol Genet Physiol; 2011 Nov; 315(9):505-11. PubMed ID: 21866581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microgravity-induced modifications of the vestibuloocular reflex in Xenopus laevis tadpoles are related to development and the occurrence of tail lordosis.
    Horn ER
    J Exp Biol; 2006 Aug; 209(Pt 15):2847-58. PubMed ID: 16857868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphometric investigations of sensory vestibular structures in tadpoles (Xenopus laevis) after a spaceflight: implications for microgravity-induced alterations of the vestibuloocular reflex.
    Horn E; Böser S; Membre H; Dournon C; Husson D; Gualandris-Parisot L
    Protoplasma; 2006 Dec; 229(2-4):193-203. PubMed ID: 17180501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The minimum duration of microgravity experience during space flight which affects the development of the roll induced vestibulo-ocular reflex in an amphibian (Xenopus laevis).
    Sebastian C; Horn E
    Neurosci Lett; 1998 Sep; 253(3):171-4. PubMed ID: 9792238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Features of vestibuloocular reflex modulations induced by altered gravitational forces in tadpoles (Xenopus laevis).
    Sebastian C; Horn E
    Adv Space Res; 2001; 28(4):579-88. PubMed ID: 11799991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of the macular vestibuloocular reflex to altered gravitational conditions in a fish (Oreochromis mossambicus).
    Horn E; Sebastian C
    Adv Space Res; 2002; 30(4):711-20. PubMed ID: 12528668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Readaptation of the vestibuloocular reflex to 1g-condition in immature lower vertebrates (Xenopus laevis) after micro- or hypergravity exposure.
    Sebastian C; Horn E; Esseling K; Neubert J
    Acta Astronaut; 1995; 36(8-12):487-503. PubMed ID: 11540981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hypergravity related sensitive period during the development of the roll induced vestibuloocular reflex in an amphibian (Xenopus laevis).
    Horn E; Sebastian C
    Neurosci Lett; 1996 Sep; 216(1):25-8. PubMed ID: 8892383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of vestibular connections in rat embryos in microgravity.
    Bruce LL; Fritzsch B
    J Gravit Physiol; 1997 Jul; 4(2):P59-62. PubMed ID: 11540700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate.
    Gualandris-Parisot L; Husson D; Foulquier F; Kan P; Davet J; Aimar C; Dournon C; Duprat AM
    Adv Space Res; 2001; 28(4):569-78. PubMed ID: 11799990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity.
    Fejtek M; Souza K; Neff A; Wassersug R
    J Exp Biol; 1998 Jun; 201(Pt 12):1917-26. PubMed ID: 9722430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gravity, hypergravity and microgravity on vestibular neurones of the crab.
    Fraser PJ; Araujo R; Alferez D; Carneiro MJ; Pollard M
    J Gravit Physiol; 2004 Jul; 11(2):P1-4. PubMed ID: 16229107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Presumed role of the gravity in the establishment of the symmetrization in amphibian embryos. Response provided by the biological experimentation in space].
    Bautz A
    Bull Acad Soc Lorraines Sci; 2002; 41(1-2):58-66. PubMed ID: 14983825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vestibulo-ocular reflex of hypergravity rats.
    Wubbels RJ; de Jong HA
    J Gravit Physiol; 2001 Jul; 8(1):P113-4. PubMed ID: 12650194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.