These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22570275)

  • 1. Development of a fluid bed granulation design space using critical quality attribute weighted tolerance intervals.
    Zacour BM; Drennen JK; Anderson CA
    J Pharm Sci; 2012 Aug; 101(8):2917-29. PubMed ID: 22570275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid formulation screening with a Multipart Microscale Fluid bed Powder processor.
    Kivikero N; Murtomaa M; Antikainen O; Hatara J; Juppo AM; Sandler N
    Pharm Dev Technol; 2011 Aug; 16(4):358-66. PubMed ID: 20387990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcrystalline cellulose, a direct compression binder in a quality by design environment--a review.
    Thoorens G; Krier F; Leclercq B; Carlin B; Evrard B
    Int J Pharm; 2014 Oct; 473(1-2):64-72. PubMed ID: 24993785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes.
    Kukec S; Hudovornik G; Dreu R; Vrečer F
    Drug Dev Ind Pharm; 2014 Jul; 40(7):952-9. PubMed ID: 23662716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A qualitative method for monitoring of nucleation and granule growth in fluid bed wet granulation by reflectance near-infrared spectroscopy.
    Li W; Cunningham J; Rasmussen H; Winstead D
    J Pharm Sci; 2007 Dec; 96(12):3470-7. PubMed ID: 17549771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined experimental and modeling approach to study the effects of high-shear wet granulation process parameters on granule characteristics.
    Pandey P; Tao J; Chaudhury A; Ramachandran R; Gao JZ; Bindra DS
    Pharm Dev Technol; 2013 Feb; 18(1):210-24. PubMed ID: 22780851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De-risking excipient particle size distribution variability with automated robust mixing: Integrating quality by design and process analytical technology.
    Lee WB; Widjaja E; Heng PWS; Chan LW
    Eur J Pharm Biopharm; 2020 Dec; 157():9-24. PubMed ID: 33022392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The consequences of granulate heterogeneity towards breakage and attrition upon fluid-bed drying.
    Nieuwmeyer F; van der Voort Maarschalk K; Vromans H
    Eur J Pharm Biopharm; 2008 Sep; 70(1):402-8. PubMed ID: 18440211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug distribution in wet granulation: foam versus spray.
    Tan MX; Nguyen TH; Hapgood KP
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1389-400. PubMed ID: 23057532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of binder droplet dimension on granulation rate during fluidized bed granulation.
    Fujiwara M; Dohi M; Otsuka T; Yamashita K; Sako K
    Chem Pharm Bull (Tokyo); 2013; 61(3):320-5. PubMed ID: 23449201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A formulation strategy for solving the overgranulation problem in high shear wet granulation.
    Osei-Yeboah F; Zhang M; Feng Y; Sun CC
    J Pharm Sci; 2014 Aug; 103(8):2434-40. PubMed ID: 24985120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granulation of increasingly hydrophobic formulations using a twin screw granulator.
    Yu S; Reynolds GK; Huang Z; de Matas M; Salman AD
    Int J Pharm; 2014 Nov; 475(1-2):82-96. PubMed ID: 25124058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near infrared spectroscopy for rapid and in-line detection of particle size distribution variability in lactose during mixing.
    Lee WB; Widjaja E; Heng PWS; Chan LW
    Int J Pharm; 2019 Jul; 566():454-462. PubMed ID: 31170478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of tablet weight variability by optimizing paddle speed in the forced feeder of a high-speed rotary tablet press.
    Peeters E; De Beer T; Vervaet C; Remon JP
    Drug Dev Ind Pharm; 2015 Apr; 41(4):530-9. PubMed ID: 24502268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and repeatability of a continuous twin screw granulation and drying system.
    Vercruysse J; Delaet U; Van Assche I; Cappuyns P; Arata F; Caporicci G; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1031-8. PubMed ID: 23702273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.
    Mosig J; Kleinebudde P
    J Pharm Sci; 2015 Mar; 104(3):1108-18. PubMed ID: 25558976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time assessment of critical quality attributes of a continuous granulation process.
    Fonteyne M; Vercruysse J; Díaz DC; Gildemyn D; Vervaet C; Remon JP; De Beer T
    Pharm Dev Technol; 2013 Feb; 18(1):85-97. PubMed ID: 22023327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous twin screw granulation: influence of process variables on granule and tablet quality.
    Vercruysse J; Córdoba Díaz D; Peeters E; Fonteyne M; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2012 Sep; 82(1):205-11. PubMed ID: 22687571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a continuous twin screw granulation and drying system during formulation development and process optimization.
    Vercruysse J; Peeters E; Fonteyne M; Cappuyns P; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2015 Jan; 89():239-47. PubMed ID: 25528462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Form conversion of anhydrous lactose during wet granulation and its effect on compactibility.
    Shah KR; Hussain MA; Hubert M; Farag Badawy SI
    Int J Pharm; 2008 Jun; 357(1-2):228-34. PubMed ID: 18374527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.