These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 22570350)
1. Critical role of TNF-α-induced macrophage VEGF and iNOS production in the experimental corneal neovascularization. Lu P; Li L; Liu G; Baba T; Ishida Y; Nosaka M; Kondo T; Zhang X; Mukaida N Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3516-26. PubMed ID: 22570350 [TBL] [Abstract][Full Text] [Related]
2. Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist. Lu P; Li L; Liu G; Zhang X; Mukaida N Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4761-8. PubMed ID: 19458323 [TBL] [Abstract][Full Text] [Related]
3. Alkali-induced corneal neovascularization is independent of CXCR2-mediated neutrophil infiltration. Lu P; Li L; Mukaida N; Zhang X Cornea; 2007 Feb; 26(2):199-206. PubMed ID: 17251813 [TBL] [Abstract][Full Text] [Related]
4. Essential contribution of CCL3 to alkali-induced corneal neovascularization by regulating vascular endothelial growth factor production by macrophages. Lu P; Li L; Wu Y; Mukaida N; Zhang X Mol Vis; 2008 Sep; 14():1614-22. PubMed ID: 18776949 [TBL] [Abstract][Full Text] [Related]
5. Critical role of SDF-1α-induced progenitor cell recruitment and macrophage VEGF production in the experimental corneal neovascularization. Liu G; Lu P; Li L; Jin H; He X; Mukaida N; Zhang X Mol Vis; 2011; 17():2129-38. PubMed ID: 21850188 [TBL] [Abstract][Full Text] [Related]
6. Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization. Lu P; Li L; Liu G; van Rooijen N; Mukaida N; Zhang X Cornea; 2009 Jun; 28(5):562-9. PubMed ID: 19421039 [TBL] [Abstract][Full Text] [Related]
7. The pathogenic roles of tumor necrosis factor receptor p55 in acetaminophen-induced liver injury in mice. Ishida Y; Kondo T; Tsuneyama K; Lu P; Takayasu T; Mukaida N J Leukoc Biol; 2004 Jan; 75(1):59-67. PubMed ID: 14557383 [TBL] [Abstract][Full Text] [Related]
8. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization. Liu G; Zhang W; Xiao Y; Lu P Curr Eye Res; 2015 Sep; 40(9):891-901. PubMed ID: 25309995 [TBL] [Abstract][Full Text] [Related]
9. Interleukin (IL)-17A Promotes Angiogenesis in an Experimental Corneal Neovascularization Model. Liu G; Wu H; Lu P; Zhang X Curr Eye Res; 2017 Mar; 42(3):368-379. PubMed ID: 27419340 [TBL] [Abstract][Full Text] [Related]
10. Impaired angiogenic response in the cornea of mice lacking tenascin C. Sumioka T; Fujita N; Kitano A; Okada Y; Saika S Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2462-7. PubMed ID: 21087965 [TBL] [Abstract][Full Text] [Related]
11. Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Kitakata H; Nemoto-Sasaki Y; Takahashi Y; Kondo T; Mai M; Mukaida N Cancer Res; 2002 Nov; 62(22):6682-7. PubMed ID: 12438267 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of corneal neovascularization by blocking the angiotensin II type 1 receptor. Usui T; Sugisaki K; Iriyama A; Yokoo S; Yamagami S; Nagai N; Ishida S; Amano S Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4370-6. PubMed ID: 18829859 [TBL] [Abstract][Full Text] [Related]
13. Endogenous TNFalpha suppression of neovascularization in corneal stroma in mice. Fujita S; Saika S; Kao WW; Fujita K; Miyamoto T; Ikeda K; Nakajima Y; Ohnishi Y Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3051-5. PubMed ID: 17591872 [TBL] [Abstract][Full Text] [Related]
14. The expression of nuclear factor kappa B in inflammation-induced rat corneal neovascularization. Zhang MC; Wang Y; Yang Y Ocul Immunol Inflamm; 2006 Dec; 14(6):359-65. PubMed ID: 17162607 [TBL] [Abstract][Full Text] [Related]
15. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. Mori R; Kondo T; Ohshima T; Ishida Y; Mukaida N FASEB J; 2002 Jul; 16(9):963-74. PubMed ID: 12087057 [TBL] [Abstract][Full Text] [Related]
16. ADP-ribosylation factor as a novel target for corneal neovascularization regression. Dai C; Liu G; Li L; Xiao Y; Zhang X; Lu P Mol Vis; 2012; 18():2947-53. PubMed ID: 23288987 [TBL] [Abstract][Full Text] [Related]
17. Interleukin-1 receptor-1-deficient mice show attenuated production of ocular surface inflammatory cytokines in experimental dry eye. Narayanan S; Corrales RM; Farley W; McDermott AM; Pflugfelder SC Cornea; 2008 Aug; 27(7):811-7. PubMed ID: 18650668 [TBL] [Abstract][Full Text] [Related]
18. A siRNA targeting vascular endothelial growth factor-A inhibiting experimental corneal neovascularization. Zuo L; Fan Y; Wang F; Gu Q; Xu X Curr Eye Res; 2010 May; 35(5):375-84. PubMed ID: 20450250 [TBL] [Abstract][Full Text] [Related]
19. Laser-induced choroidal neovascularization in mice attenuated by deficiency in the apelin-APJ system. Hara C; Kasai A; Gomi F; Satooka T; Sakimoto S; Nakai K; Yoshioka Y; Yamamuro A; Maeda S; Nishida K Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4321-9. PubMed ID: 23722395 [TBL] [Abstract][Full Text] [Related]
20. Upadacitinib inhibits corneal inflammation and neovascularization by suppressing M1 macrophage infiltration in the corneal alkali burn model. Yu J; Shen Y; Luo J; Jin J; Li P; Feng P; Guan H Int Immunopharmacol; 2023 Mar; 116():109680. PubMed ID: 36739832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]