BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 22570634)

  • 1. Recombination drives vertebrate genome contraction.
    Nam K; Ellegren H
    PLoS Genet; 2012; 8(5):e1002680. PubMed ID: 22570634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indel segregating within introns in the chicken genome are positively correlated with the recombination rates.
    Rao YS; Wang ZF; Chai XW; Wu GZ; Nie QH; Zhang XQ
    Hereditas; 2010 Apr; 147(2):53-7. PubMed ID: 20536542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phylogenetic analysis of indel dynamics in the cotton genus.
    Grover CE; Yu Y; Wing RA; Paterson AH; Wendel JF
    Mol Biol Evol; 2008 Jul; 25(7):1415-28. PubMed ID: 18400789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The recombination landscape of the zebra finch Taeniopygia guttata genome.
    Backström N; Forstmeier W; Schielzeth H; Mellenius H; Nam K; Bolund E; Webster MT; Ost T; Schneider M; Kempenaers B; Ellegren H
    Genome Res; 2010 Apr; 20(4):485-95. PubMed ID: 20357052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome.
    Rizzon C; Marais G; Gouy M; Biémont C
    Genome Res; 2002 Mar; 12(3):400-7. PubMed ID: 11875027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.
    Ji Y; DeWoody JA
    J Mol Evol; 2016 Jun; 82(6):251-63. PubMed ID: 27154235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The correlation between intron length and recombination in drosophila. Dynamic equilibrium between mutational and selective forces.
    Comeron JM; Kreitman M
    Genetics; 2000 Nov; 156(3):1175-90. PubMed ID: 11063693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly variable recombinational landscape modulates efficacy of natural selection in birds.
    Gossmann TI; Santure AW; Sheldon BC; Slate J; Zeng K
    Genome Biol Evol; 2014 Aug; 6(8):2061-75. PubMed ID: 25062920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of divergence time and recombination rate on molecular evolution of Drosophila INE-1 transposable elements and other candidates for neutrally evolving sites.
    Wang J; Keightley PD; Halligan DL
    J Mol Evol; 2007 Dec; 65(6):627-39. PubMed ID: 17896069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution.
    Hardison RC; Roskin KM; Yang S; Diekhans M; Kent WJ; Weber R; Elnitski L; Li J; O'Connor M; Kolbe D; Schwartz S; Furey TS; Whelan S; Goldman N; Smit A; Miller W; Chiaromonte F; Haussler D
    Genome Res; 2003 Jan; 13(1):13-26. PubMed ID: 12529302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of genes in avian genomes.
    Nam K; Mugal C; Nabholz B; Schielzeth H; Wolf JB; Backström N; Künstner A; Balakrishnan CN; Heger A; Ponting CP; Clayton DF; Ellegren H
    Genome Biol; 2010; 11(6):R68. PubMed ID: 20573239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coevolution between transposable elements and recombination.
    Kent TV; Uzunović J; Wright SI
    Philos Trans R Soc Lond B Biol Sci; 2017 Dec; 372(1736):. PubMed ID: 29109221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution.
    Völker M; Backström N; Skinner BM; Langley EJ; Bunzey SK; Ellegren H; Griffin DK
    Genome Res; 2010 Apr; 20(4):503-11. PubMed ID: 20357050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genomic landscape of short insertion and deletion polymorphisms in the chicken (Gallus gallus) Genome: a high frequency of deletions in tandem duplicates.
    Brandström M; Ellegren H
    Genetics; 2007 Jul; 176(3):1691-701. PubMed ID: 17507681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lack of recombination drives the fixation of transposable elements on the fourth chromosome of Drosophila melanogaster.
    Bartolomé C; Maside X
    Genet Res; 2004 Apr; 83(2):91-100. PubMed ID: 15219154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A macaque's-eye view of human insertions and deletions: differences in mechanisms.
    Kvikstad EM; Tyekucheva S; Chiaromonte F; Makova KD
    PLoS Comput Biol; 2007 Sep; 3(9):1772-82. PubMed ID: 17941704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolutionary dynamics that retain long neutral genomic sequences in face of indel deletion bias: a model and its application to human introns.
    Loewenthal G; Wygoda E; Nagar N; Glick L; Mayrose I; Pupko T
    Open Biol; 2022 Dec; 12(12):220223. PubMed ID: 36514983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana.
    Wright SI; Agrawal N; Bureau TE
    Genome Res; 2003 Aug; 13(8):1897-903. PubMed ID: 12902382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster.
    Adrion JR; Song MJ; Schrider DR; Hahn MW; Schaack S
    Genome Biol Evol; 2017 May; 9(5):1329-1340. PubMed ID: 28338986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome size evolution in pufferfish: a comparative analysis of diodontid and tetraodontid pufferfish genomes.
    Neafsey DE; Palumbi SR
    Genome Res; 2003 May; 13(5):821-30. PubMed ID: 12727902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.