These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 22571251)

  • 1. Kernel duration and modulation gain in a coupled oscillator model and their implications on the progression of seizures.
    Chen W; Cahoy DO; Tasker JG; Chiu AW
    Network; 2012; 23(1-2):59-75. PubMed ID: 22571251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. System characterization of neuronal excitability in the hippocampus and its relevance to observed dynamics of spontaneous seizure-like transitions.
    Zalay OC; Serletis D; Carlen PL; Bardakjian BL
    J Neural Eng; 2010 Jun; 7(3):036002. PubMed ID: 20404398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal synchrony and the transition to spontaneous seizures.
    Grasse DW; Karunakaran S; Moxon KA
    Exp Neurol; 2013 Oct; 248():72-84. PubMed ID: 23707218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online prediction of onsets of seizure-like events in hippocampal neural networks using wavelet artificial neural networks.
    Chiu AW; Kang EE; Derchansky M; Carlen PL; Bardakjian BL
    Ann Biomed Eng; 2006 Feb; 34(2):282-94. PubMed ID: 16450192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common time-frequency analysis of local field potential and pyramidal cell activity in seizure-like events of the rat hippocampus.
    Cotic M; Chiu AW; Jahromi SS; Carlen PL; Bardakjian BL
    J Neural Eng; 2011 Aug; 8(4):046024. PubMed ID: 21712570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity-modulated seizure dynamics for seizure termination in realistic neuronal models.
    Koppert MM; Kalitzin S; Lopes da Silva FH; Viergever MA
    J Neural Eng; 2011 Aug; 8(4):046027. PubMed ID: 21730748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postictal single-cell firing patterns in the hippocampus.
    Zhou JL; Lenck-Santini PP; Holmes GL
    Epilepsia; 2007 Apr; 48(4):713-9. PubMed ID: 17437414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frequency synaptic input contributes to seizure initiation in the low-[Mg2+] model of epilepsy.
    Lasztóczi B; Antal K; Nyikos L; Emri Z; Kardos J
    Eur J Neurosci; 2004 Mar; 19(5):1361-72. PubMed ID: 15016094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of high-frequency oscillations in hippocampal electrical activities on the classification of epileptiform events using artificial neural networks.
    Chiu AW; Jahromi SS; Khosravani H; Carlen PL; Bardakjian BL
    J Neural Eng; 2006 Mar; 3(1):9-20. PubMed ID: 16510938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability.
    Thomas EA; Reid CA; Petrou S
    Epilepsia; 2010 Jan; 51(1):136-45. PubMed ID: 19682031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased neuronal firing in computer simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus.
    Spampanato J; Aradi I; Soltesz I; Goldin AL
    J Neurophysiol; 2004 May; 91(5):2040-50. PubMed ID: 14702334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of evoked local field potentials in the hippocampus of epileptic rats with spontaneous seizures.
    Queiroz CM; Gorter JA; Lopes da Silva FH; Wadman WJ
    J Neurophysiol; 2009 Mar; 101(3):1588-97. PubMed ID: 18842951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal desynchronization as a trigger for seizure generation.
    Li Y; Fleming IN; Colpan ME; Mogul DJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):62-73. PubMed ID: 18303807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the neuronal aggregate generating seizures in the rat tetanus toxin model of epilepsy.
    Finnerty GT; Jefferys JG
    J Neurophysiol; 2002 Dec; 88(6):2919-27. PubMed ID: 12466418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro.
    Gnatkovsky V; Librizzi L; Trombin F; de Curtis M
    Ann Neurol; 2008 Dec; 64(6):674-86. PubMed ID: 19107991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responsive neuromodulators based on artificial neural networks used to control seizure-like events in a computational model of epilepsy.
    Colic S; Zalay OC; Bardakjian BL
    Int J Neural Syst; 2011 Oct; 21(5):367-83. PubMed ID: 21956930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between interictal and ictal paroxysms in an in vitro model of focal hippocampal epilepsy.
    Jensen MS; Yaari Y
    Ann Neurol; 1988 Nov; 24(5):591-8. PubMed ID: 2849367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the persistent CA3 interneuronal spiking activity in elevated extracellular potassium in the young rat hippocampus.
    Shin DS; Yu W; Fawcett A; Carlen PL
    Brain Res; 2010 May; 1331():39-50. PubMed ID: 20303341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.