BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22571278)

  • 1. Lymph node-induced immune tolerance in chronic lymphocytic leukaemia: a role for caveolin-1.
    Gilling CE; Mittal AK; Chaturvedi NK; Iqbal J; Aoun P; Bierman PJ; Bociek RG; Weisenburger DD; Joshi SS
    Br J Haematol; 2012 Jul; 158(2):216-231. PubMed ID: 22571278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of caveolin-1 leads to delayed development of chronic lymphocytic leukemia in Eμ-TCL1 mouse model.
    Shukla A; Cutucache CE; Sutton GL; Pitner MA; Rai K; Rai S; Opavsky R; Swanson PC; Joshi SS
    Exp Hematol; 2016 Jan; 44(1):30-7.e1. PubMed ID: 26435347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic lymphocytic leukemia cells in a lymph node microenvironment depict molecular signature associated with an aggressive disease.
    Mittal AK; Chaturvedi NK; Rai KJ; Gilling-Cutucache CE; Nordgren TM; Moragues M; Lu R; Opavsky R; Bociek GR; Weisenburger DD; Iqbal J; Joshi SS
    Mol Med; 2014 Jul; 20(1):290-301. PubMed ID: 24800836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of adhesion molecules in B-cell chronic lymphocytic leukaemia: an analysis in lymphoid compartments--peripheral blood, bone marrow and lymph node.
    Nadkarni JJ; Perambakam SM; Rathore VB; Amin KM; Parikh PM; Naresh KN; Advani SH
    Cancer Biother Radiopharm; 1998 Aug; 13(4):269-74. PubMed ID: 10850362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ibrutinib induces rapid down-regulation of inflammatory markers and altered transcription of chronic lymphocytic leukaemia-related genes in blood and lymph nodes.
    Palma M; Krstic A; Peña Perez L; Berglöf A; Meinke S; Wang Q; Blomberg KEM; Kamali-Moghaddam M; Shen Q; Jaremko G; Lundin J; De Paepe A; Höglund P; Kimby E; Österborg A; Månsson R; Smith CIE
    Br J Haematol; 2018 Oct; 183(2):212-224. PubMed ID: 30125946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22.
    Ghia P; Strola G; Granziero L; Geuna M; Guida G; Sallusto F; Ruffing N; Montagna L; Piccoli P; Chilosi M; Caligaris-Cappio F
    Eur J Immunol; 2002 May; 32(5):1403-13. PubMed ID: 11981828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotype and immune function of lymph node and peripheral blood CLL cells are linked to transendothelial migration.
    Pasikowska M; Walsby E; Apollonio B; Cuthill K; Phillips E; Coulter E; Longhi MS; Ma Y; Yallop D; Barber LD; Patten P; Fegan C; Ramsay AG; Pepper C; Devereux S; Buggins AG
    Blood; 2016 Jul; 128(4):563-73. PubMed ID: 27252234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity.
    Smit LA; Hallaert DY; Spijker R; de Goeij B; Jaspers A; Kater AP; van Oers MH; van Noesel CJ; Eldering E
    Blood; 2007 Feb; 109(4):1660-8. PubMed ID: 17038534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia.
    Herishanu Y; Pérez-Galán P; Liu D; Biancotto A; Pittaluga S; Vire B; Gibellini F; Njuguna N; Lee E; Stennett L; Raghavachari N; Liu P; McCoy JP; Raffeld M; Stetler-Stevenson M; Yuan C; Sherry R; Arthur DC; Maric I; White T; Marti GE; Munson P; Wilson WH; Wiestner A
    Blood; 2011 Jan; 117(2):563-74. PubMed ID: 20940416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells.
    Pascutti MF; Jak M; Tromp JM; Derks IA; Remmerswaal EB; Thijssen R; van Attekum MH; van Bochove GG; Luijks DM; Pals ST; van Lier RA; Kater AP; van Oers MH; Eldering E
    Blood; 2013 Oct; 122(17):3010-9. PubMed ID: 24014238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TAp63 regulates VLA-4 expression and chronic lymphocytic leukemia cell migration to the bone marrow in a CD74-dependent manner.
    Binsky I; Lantner F; Grabovsky V; Harpaz N; Shvidel L; Berrebi A; Goldenberg DM; Leng L; Bucala R; Alon R; Haran M; Shachar I
    J Immunol; 2010 May; 184(9):4761-9. PubMed ID: 20357260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood.
    Herndon TM; Chen SS; Saba NS; Valdez J; Emson C; Gatmaitan M; Tian X; Hughes TE; Sun C; Arthur DC; Stetler-Stevenson M; Yuan CM; Niemann CU; Marti GE; Aue G; Soto S; Farooqui MZH; Herman SEM; Chiorazzi N; Wiestner A
    Leukemia; 2017 Jun; 31(6):1340-1347. PubMed ID: 28074063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circulating B-cell chronic lymphocytic leukemia cells display impaired migration to lymph nodes and bone marrow.
    Hartmann TN; Grabovsky V; Wang W; Desch P; Rubenzer G; Wollner S; Binsky I; Vallon-Eberhard A; Sapoznikov A; Burger M; Shachar I; Haran M; Honczarenko M; Greil R; Alon R
    Cancer Res; 2009 Apr; 69(7):3121-30. PubMed ID: 19293181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of trisomy 12 by fluorescence in situ hybridization in peripheral blood, bone marrow and lymph nodes of patients with B-cell chronic lymphocytic leukemia.
    Liso V; Capalbo S; Lapietra A; Pavone V; Guarini A; Specchia G
    Haematologica; 1999 Mar; 84(3):212-7. PubMed ID: 10189384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the chemokine receptors CXCR4 and CCR7 and disease progression in B-cell chronic lymphocytic leukemia/ small lymphocytic lymphoma.
    Ghobrial IM; Bone ND; Stenson MJ; Novak A; Hedin KE; Kay NE; Ansell SM
    Mayo Clin Proc; 2004 Mar; 79(3):318-25. PubMed ID: 15008605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications.
    Crompot E; Van Damme M; Pieters K; Vermeersch M; Perez-Morga D; Mineur P; Maerevoet M; Meuleman N; Bron D; Lagneaux L; Stamatopoulos B
    Haematologica; 2017 Sep; 102(9):1594-1604. PubMed ID: 28596280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced formation and survival of CD4+ CD25hi Foxp3+ T-cells in chronic lymphocytic leukemia.
    Jak M; Mous R; Remmerswaal EB; Spijker R; Jaspers A; Yagüe A; Eldering E; Van Lier RA; Van Oers MH
    Leuk Lymphoma; 2009 May; 50(5):788-801. PubMed ID: 19452318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia.
    Lewinsky H; Barak AF; Huber V; Kramer MP; Radomir L; Sever L; Orr I; Mirkin V; Dezorella N; Shapiro M; Cohen Y; Shvidel L; Seiffert M; Herishanu Y; Becker-Herman S; Shachar I
    J Clin Invest; 2018 Dec; 128(12):5465-5478. PubMed ID: 30277471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression.
    Wang M; Tan LP; Dijkstra MK; van Lom K; Robertus JL; Harms G; Blokzijl T; Kooistra K; van T'veer MB; Rosati S; Visser L; Jongen-Lavrencic M; Kluin PM; van den Berg A
    J Pathol; 2008 May; 215(1):13-20. PubMed ID: 18348159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular tumor necrosis factor production by T- and B-cells in B-cell chronic lymphocytic leukemia.
    Bojarska-Junak A; Rolinski J; Wasik-Szczepaneko E; Kaluzny Z; Dmoszynska A
    Haematologica; 2002 May; 87(5):490-9. PubMed ID: 12010662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.