BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22571354)

  • 1. Minimalism in radiation synthesis of biomedical functional nanogels.
    Dispenza C; Sabatino MA; Grimaldi N; Bulone D; Bondì ML; Casaletto MP; Rigogliuso S; Adamo G; Ghersi G
    Biomacromolecules; 2012 Jun; 13(6):1805-17. PubMed ID: 22571354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant-free synthesis of biodegradable, biocompatible, and stimuli-responsive cationic nanogel particles.
    Urakami H; Hentschel J; Seetho K; Zeng H; Chawla K; Guan Z
    Biomacromolecules; 2013 Oct; 14(10):3682-8. PubMed ID: 24047127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of biomimetic nanogels for immunorecognition.
    Silva CS; Lansalot M; Garcia JQ; Taipa MÂ; Martinho JM
    Colloids Surf B Biointerfaces; 2013 Dec; 112():264-71. PubMed ID: 23994750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of radiation for the synthesis of poly(n-vinyl pyrrolidone) nanogels with controlled sizes from aqueous solutions.
    Duygu Sütekin S; Güven O
    Appl Radiat Isot; 2019 Mar; 145():161-169. PubMed ID: 30639632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and properties of cyclodextrin/PNIPAm microgels.
    Liu YY; Yu Y; Tian W; Sun L; Fan XD
    Macromol Biosci; 2009 May; 9(5):525-34. PubMed ID: 19107719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-functionalizable polymer nanogels with facile hydrophobic guest encapsulation capabilities.
    Ryu JH; Jiwpanich S; Chacko R; Bickerton S; Thayumanavan S
    J Am Chem Soc; 2010 Jun; 132(24):8246-7. PubMed ID: 20504022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(2-oxazoline)-based nanogels as biocompatible pseudopolypeptide nanoparticles.
    Legros C; Wirotius AL; De Pauw-Gillet MC; Tam KC; Taton D; Lecommandoux S
    Biomacromolecules; 2015 Jan; 16(1):183-91. PubMed ID: 25409266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting ligand-functionalized and redox-sensitive heparin-Pluronic nanogels for intracellular protein delivery.
    Nguyen DH; Joung YK; Choi JH; Moon HT; Park KD
    Biomed Mater; 2011 Oct; 6(5):055004. PubMed ID: 21849723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Softer zwitterionic nanogels for longer circulation and lower splenic accumulation.
    Zhang L; Cao Z; Li Y; Ella-Menye JR; Bai T; Jiang S
    ACS Nano; 2012 Aug; 6(8):6681-6. PubMed ID: 22830983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of responsive catalytic Au@PVP hybrid nanogels.
    Xiao C; Chen S; Zhang L; Zhou S; Wu W
    Chem Commun (Camb); 2012 Dec; 48(96):11751-3. PubMed ID: 23108039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) nanogels for controlled release of naltrexone.
    Asadi H; Rostamizadeh K; Salari D; Hamidi M
    Int J Pharm; 2011 Sep; 416(1):356-64. PubMed ID: 21729744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermosensitive, biocompatible and antifouling nanogels prepared via aqueous raft dispersion polymerization for targeted drug delivery.
    Shen W; Chang Y; Wang H; Liu G; Cao A; An Z
    J Control Release; 2011 Nov; 152 Suppl 1():e75-6. PubMed ID: 22195939
    [No Abstract]   [Full Text] [Related]  

  • 14. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells.
    Manju S; Sreenivasan K
    Langmuir; 2011 Dec; 27(23):14489-96. PubMed ID: 21988497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance.
    Zhang L; Xue H; Cao Z; Keefe A; Wang J; Jiang S
    Biomaterials; 2011 Jul; 32(20):4604-8. PubMed ID: 21453965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death.
    Bae KH; Mok H; Park TG
    Biomaterials; 2008 Aug; 29(23):3376-83. PubMed ID: 18474396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications.
    Barrera C; Herrera AP; Bezares N; Fachini E; Olayo-Valles R; Hinestroza JP; Rinaldi C
    J Colloid Interface Sci; 2012 Jul; 377(1):40-50. PubMed ID: 22513169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications.
    Moya-Ortega MD; Alvarez-Lorenzo C; Concheiro A; Loftsson T
    Int J Pharm; 2012 May; 428(1-2):152-63. PubMed ID: 22388054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery.
    Wu W; Aiello M; Zhou T; Berliner A; Banerjee P; Zhou S
    Biomaterials; 2010 Apr; 31(11):3023-31. PubMed ID: 20106519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterocoagulation as a facile route to prepare stable serum albumin-nanoparticle conjugates for biomedical applications: synthetic protocols and mechanistic insights.
    Au KM; Armes SP
    ACS Nano; 2012 Sep; 6(9):8261-79. PubMed ID: 22913736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.