BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2257146)

  • 1. Electrophoresis of DNA fragments in gels from acrylamide-rich copolymers.
    Christy KG; LaTart DB; Osterhoudt HW; Ponticello IS
    Biotechniques; 1990 Oct; 9(4):480-5. PubMed ID: 2257146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1991 Sep; 12(9):612-9. PubMed ID: 1752240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalously slow electrophoretic mobilities of DNA restriction fragments in polyacrylamide gels are not eliminated by increasing the gel pore size.
    Stellwagen A; Stellwagen NC
    Biopolymers; 1990; 30(3-4):309-24. PubMed ID: 2177663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA mobility anomalies are determined primarily by polyacrylamide gel concentration, not gel pore size.
    Stellwagen NC
    Electrophoresis; 1997 Jan; 18(1):34-44. PubMed ID: 9059818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transition of polymers into a network of polymers alters per se the water activity.
    Trombetta G; Di Bona C; Grazi E
    Int J Biol Macromol; 2005 Mar; 35(1-2):15-8. PubMed ID: 15769510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile microfabricated platform for electrophoresis of double- and single-stranded DNA.
    Ugaz VM; Lin R; Srivastava N; Burke DT; Burns MA
    Electrophoresis; 2003 Jan; 24(1-2):151-7. PubMed ID: 12652585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SDS disc electrophoresis of proteins in homogeneous, low-concentrated polyacrylamide gels.
    Maly IP; Nitsch C
    Electrophoresis; 2007 May; 28(10):1508-13. PubMed ID: 17427254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers.
    Stellwagen NC
    Electrophoresis; 1998 Jul; 19(10):1542-7. PubMed ID: 9719523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-linked polyacrylamide gel electrophoresis of single-stranded DNA for microfabricated genomic analysis systems.
    Ugaz VM; Brahmasandra SN; Burke DT; Burns MA
    Electrophoresis; 2002 May; 23(10):1450-9. PubMed ID: 12116155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly-acrylamide gel disc electrophoresis (PAGDE). Part-I.
    Saoji AM; Khare PM
    Indian J Pathol Microbiol; 1985 Jan; 28(1):85-9. PubMed ID: 3914460
    [No Abstract]   [Full Text] [Related]  

  • 12. Estimation of polyacrylamide gel pore size from Ferguson plots of normal and anomalously migrating DNA fragments. I. Gels containing 3% N,N'-methylenebisacrylamide.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1991 Apr; 12(4):253-63. PubMed ID: 2070781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein electrophoresis in polyacrylamide gels with templated pores.
    Rill RL; Locke BR; Liu Y; Dharia J; Van Winkle D
    Electrophoresis; 1996 Aug; 17(8):1304-12. PubMed ID: 8874055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis.
    Wang J; Ugaz VM
    Electrophoresis; 2006 Sep; 27(17):3349-58. PubMed ID: 16892481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels.
    Hatch AV; Herr AE; Throckmorton DJ; Brennan JS; Singh AK
    Anal Chem; 2006 Jul; 78(14):4976-84. PubMed ID: 16841920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of a single base mismatch in double-stranded DNA by electrophoresis on uncrosslinked polyacrylamide gel.
    Pulyaeva H; Zakharov SF; Garner MM; Chrambach A
    Electrophoresis; 1994; 15(8-9):1095-100. PubMed ID: 7859713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relative separation efficiencies of highly concentrated, uncrosslinked or low-crosslinked polyacrylamide gels compared to conventional gels of moderate concentration and crosslinking.
    Zakharov SF; Chrambach A
    Electrophoresis; 1994; 15(8-9):1101-3. PubMed ID: 7859714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acrylamide-agarose copolymers: improved resolution of high molecular mass proteins in two-dimensional gel electrophoresis.
    Roncada P; Cretich M; Fortin R; Agosti S; De Franceschi L; Greppi GF; Turrini F; Carta F; Turri S; Levi M; Chiari M
    Proteomics; 2005 Jun; 5(9):2331-9. PubMed ID: 15887187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model and field studies of the degradation of cross-linked polyacrylamide gels used during the revegetation of slate waste.
    Holliman PJ; Clark JA; Williamson JC; Jones DL
    Sci Total Environ; 2005 Jan; 336(1-3):13-24. PubMed ID: 15589246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pouring linear gradient gels with a gradient former.
    Simpson RJ
    Cold Spring Harb Protoc; 2010 Apr; 2010(4):pdb.prot5411. PubMed ID: 20360365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.