BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22571600)

  • 1. High-pressure investigation of Li2MnSiO4 and Li2CoSiO4 electrode materials for lithium-ion batteries.
    Santamaría-Pérez D; Amador U; Tortajada J; Dominko R; Arroyo-de Dompablo ME
    Inorg Chem; 2012 May; 51(10):5779-86. PubMed ID: 22571600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research.
    Brown CR; McCalla E; Watson C; Dahn JR
    ACS Comb Sci; 2015 Jun; 17(6):381-91. PubMed ID: 25970448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronically conductive phospho-olivines as lithium storage electrodes.
    Chung SY; Bloking JT; Chiang YM
    Nat Mater; 2002 Oct; 1(2):123-8. PubMed ID: 12618828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of nanostructured lithium ion battery materials via low temperature synthesis.
    Chen J
    Recent Pat Nanotechnol; 2013 Jan; 7(1):2-12. PubMed ID: 22747718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium-ion batteries: An unexpected conductor.
    Thackeray M
    Nat Mater; 2002 Oct; 1(2):81-2. PubMed ID: 12618814
    [No Abstract]   [Full Text] [Related]  

  • 6. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High Voltage Olivine Cathode for Application in Lithium-Ion Batteries.
    Di Lecce D; Brescia R; Scarpellini A; Prato M; Hassoun J
    ChemSusChem; 2016 Jan; 9(2):223-30. PubMed ID: 26694202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-induced cubic to monoclinic phase transformation in erbium sesquioxide Er(2)O(3).
    Guo Q; Zhao Y; Jiang C; Mao WL; Wang Z; Zhang J; Wang Y
    Inorg Chem; 2007 Jul; 46(15):6164-9. PubMed ID: 17595073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries.
    Shaju KM; Jiao F; Débart A; Bruce PG
    Phys Chem Chem Phys; 2007 Apr; 9(15):1837-42. PubMed ID: 17415496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries.
    Ait Salah A; Jozwiak P; Zaghib K; Garbarczyk J; Gendron F; Mauger A; Julien CM
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Dec; 65(5):1007-13. PubMed ID: 16716657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial synthesis of mixed transition metal oxides for lithium-ion batteries.
    Carey GH; Dahn JR
    ACS Comb Sci; 2011 Mar; 13(2):186-9. PubMed ID: 21210709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly reversible lithium storage in Bacillus subtilis -directed porous Co₃O₄ nanostructures.
    Shim HW; Jin YH; Seo SD; Lee SH; Kim DW
    ACS Nano; 2011 Jan; 5(1):443-9. PubMed ID: 21155558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries.
    Gu M; Belharouak I; Zheng J; Wu H; Xiao J; Genc A; Amine K; Thevuthasan S; Baer DR; Zhang JG; Browning ND; Liu J; Wang C
    ACS Nano; 2013 Jan; 7(1):760-7. PubMed ID: 23237664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exfoliation and reassembly of cobalt oxide nanosheets into a reversible lithium-ion battery cathode.
    Compton OC; Abouimrane A; An Z; Palmeri MJ; Brinson LC; Amine K; Nguyen ST
    Small; 2012 Apr; 8(7):1110-6. PubMed ID: 22315165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries.
    Wang XL; Han WQ; Chen J; Graetz J
    ACS Appl Mater Interfaces; 2010 May; 2(5):1548-51. PubMed ID: 20443576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag(6)Mo(2)O(7)F(3)Cl: a new silver cathode material for enhanced ICD primary lithium batteries.
    Sauvage F; Bodenez V; Tarascon JM; Poeppelmeier KR
    Inorg Chem; 2010 Jul; 49(14):6461-7. PubMed ID: 20545306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes.
    Nam KT; Kim DW; Yoo PJ; Chiang CY; Meethong N; Hammond PT; Chiang YM; Belcher AM
    Science; 2006 May; 312(5775):885-8. PubMed ID: 16601154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.