These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 22571785)
21. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Bobin P; Belacel-Ouari M; Bedioune I; Zhang L; Leroy J; Leblais V; Fischmeister R; Vandecasteele G Arch Cardiovasc Dis; 2016; 109(6-7):431-43. PubMed ID: 27184830 [TBL] [Abstract][Full Text] [Related]
22. Phosphodiesterases in the vascular system. Matsumoto T; Kobayashi T; Kamata K J Smooth Muscle Res; 2003 Aug; 39(4):67-86. PubMed ID: 14692693 [TBL] [Abstract][Full Text] [Related]
23. Improving memory: a role for phosphodiesterases. Blokland A; Schreiber R; Prickaerts J Curr Pharm Des; 2006; 12(20):2511-23. PubMed ID: 16842174 [TBL] [Abstract][Full Text] [Related]
24. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. Suvarna NU; O'Donnell JM J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724 [TBL] [Abstract][Full Text] [Related]
25. Phosphodiesterases as therapeutic targets for respiratory diseases. Zuo H; Cattani-Cavalieri I; Musheshe N; Nikolaev VO; Schmidt M Pharmacol Ther; 2019 May; 197():225-242. PubMed ID: 30759374 [TBL] [Abstract][Full Text] [Related]
26. In vivo assessment and dosimetry of 2 novel PDE10A PET radiotracers in humans: 18F-MNI-659 and 18F-MNI-654. Barret O; Thomae D; Tavares A; Alagille D; Papin C; Waterhouse R; McCarthy T; Jennings D; Marek K; Russell D; Seibyl J; Tamagnan G J Nucl Med; 2014 Aug; 55(8):1297-304. PubMed ID: 24898025 [TBL] [Abstract][Full Text] [Related]
27. Inhibitory effects of hesperetin derivatives on guinea pig phosphodiesterases and their ratios between high- and low-affinity rolipram binding. Hsu HT; Wang WH; Han CY; Chen CN; Chen CM; Ko WC J Pharm Sci; 2013 Jul; 102(7):2120-7. PubMed ID: 23666855 [TBL] [Abstract][Full Text] [Related]
28. The development of radiotracers for imaging sigma (σ) receptors in the central nervous system (CNS) using positron emission tomography (PET). Banister SD; Manoli M; Kassiou M J Labelled Comp Radiopharm; 2013; 56(3-4):215-24. PubMed ID: 24285328 [TBL] [Abstract][Full Text] [Related]
29. Advances, Perspectives and Potential Engineering Strategies of Light-Gated Phosphodiesterases for Optogenetic Applications. Tian Y; Yang S; Gao S Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066112 [TBL] [Abstract][Full Text] [Related]
30. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide. Bellamy TC; Garthwaite J Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024 [TBL] [Abstract][Full Text] [Related]
31. Application of Free Energy Perturbation (FEP+) to Understanding Ligand Selectivity: A Case Study to Assess Selectivity Between Pairs of Phosphodiesterases (PDE's). Moraca F; Negri A; de Oliveira C; Abel R J Chem Inf Model; 2019 Jun; 59(6):2729-2740. PubMed ID: 31144815 [TBL] [Abstract][Full Text] [Related]
32. In vivo selective binding of (R)-[11C]rolipram to phosphodiesterase-4 provides the basis for studying intracellular cAMP signaling in the myocardium and other peripheral tissues. Kenk M; Greene M; Thackeray J; deKemp RA; Lortie M; Thorn S; Beanlands RS; DaSilva JN Nucl Med Biol; 2007 Jan; 34(1):71-7. PubMed ID: 17210463 [TBL] [Abstract][Full Text] [Related]
33. Discovery of [¹¹C]MK-8193 as a PET tracer to measure target engagement of phosphodiesterase 10A (PDE10A) inhibitors. Cox CD; Hostetler ED; Flores BA; Evelhoch JL; Fan H; Gantert L; Holahan M; Eng W; Joshi A; McGaughey G; Meng X; Purcell M; Raheem IT; Riffel K; Yan Y; Renger JJ; Smith SM; Coleman PJ Bioorg Med Chem Lett; 2015 Nov; 25(21):4893-4898. PubMed ID: 26077491 [TBL] [Abstract][Full Text] [Related]
34. Biarylcarboxylic acids and -amides: inhibition of phosphodiesterase type IV versus [3H]rolipram binding activity and their relationship to emetic behavior in the ferret. Duplantier AJ; Biggers MS; Chambers RJ; Cheng JB; Cooper K; Damon DB; Eggler JF; Kraus KG; Marfat A; Masamune H; Pillar JS; Shirley JT; Umland JP; Watson JW J Med Chem; 1996 Jan; 39(1):120-5. PubMed ID: 8568798 [TBL] [Abstract][Full Text] [Related]
36. Characterization of the binding properties of T-773 as a PET radioligand for phosphodiesterase 10A. Harada A; Suzuki K; Miura S; Hasui T; Kamiguchi N; Ishii T; Taniguchi T; Kuroita T; Takano A; Stepanov V; Halldin C; Kimura H Nucl Med Biol; 2015 Feb; 42(2):146-54. PubMed ID: 25451212 [TBL] [Abstract][Full Text] [Related]
37. A substrate selectivity and inhibitor design lesson from the PDE10-cAMP crystal structure: a computational study. Lau JK; Li XB; Cheng YK J Phys Chem B; 2010 Apr; 114(15):5154-60. PubMed ID: 20349929 [TBL] [Abstract][Full Text] [Related]
38. Can Cyclic Nucleotide Phosphodiesterase Inhibitors Be Drugs for Parkinson's Disease? Nthenge-Ngumbau DN; Mohanakumar KP Mol Neurobiol; 2018 Jan; 55(1):822-834. PubMed ID: 28062949 [TBL] [Abstract][Full Text] [Related]
39. Efficiency gains in tracer identification for nuclear imaging: can in vivo LC-MS/MS evaluation of small molecules screen for successful PET tracers? Joshi EM; Need A; Schaus J; Chen Z; Benesh D; Mitch C; Morton S; Raub TJ; Phebus L; Barth V ACS Chem Neurosci; 2014 Dec; 5(12):1154-63. PubMed ID: 25247893 [TBL] [Abstract][Full Text] [Related]
40. Changes in phosphodiesterase activity in the developing rat submandibular gland. Tanaka S; Shimooka S; Shimomura H Arch Oral Biol; 2002 Aug; 47(8):567-76. PubMed ID: 12221013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]