BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22571825)

  • 1. Approaches to improve separation efficiency of eddy current separation for recovering aluminum from waste toner cartridges.
    Ruan J; Xu Z
    Environ Sci Technol; 2012 Jun; 46(11):6214-21. PubMed ID: 22571825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new model of repulsive force in eddy current separation for recovering waste toner cartridges.
    Ruan J; Xu Z
    J Hazard Mater; 2011 Aug; 192(1):307-13. PubMed ID: 21632177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key factors of eddy current separation for recovering aluminum from crushed e-waste.
    Ruan J; Dong L; Zheng J; Zhang T; Huang M; Xu Z
    Waste Manag; 2017 Feb; 60():84-90. PubMed ID: 27553908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An environmental friendly recovery production line of waste toner cartridges.
    Ruan J; Li J; Xu Z
    J Hazard Mater; 2011 Jan; 185(2-3):696-702. PubMed ID: 20956056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New characterisation method of electrical and electronic equipment wastes (WEEE).
    Menad N; Guignot S; van Houwelingen JA
    Waste Manag; 2013 Mar; 33(3):706-13. PubMed ID: 22784477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triboelectrostatic separation for granular plastic waste recycling: a review.
    Wu G; Li J; Xu Z
    Waste Manag; 2013 Mar; 33(3):585-97. PubMed ID: 23199793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of plastic waste by density separation: prospects for optimization.
    Gent MR; Menendez M; Toraño J; Diego I
    Waste Manag Res; 2009 Mar; 27(2):175-87. PubMed ID: 19244417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of shape and size of the particles on jigging separation of plastics mixture.
    Pita F; Castilho A
    Waste Manag; 2016 Feb; 48():89-94. PubMed ID: 26560809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of plastics by froth flotation. The role of size, shape and density of the particles.
    Pita F; Castilho A
    Waste Manag; 2017 Feb; 60():91-99. PubMed ID: 27478025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental friendly automated line for recovering the cabinet of waste refrigerator.
    Ruan J; Xu Z
    Waste Manag; 2011 Nov; 31(11):2319-26. PubMed ID: 21782408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stratification and segregation features of pulverized electronic waste in flowing film concentration.
    Vidyadhar A; Chalavadi G; Das A
    J Environ Manage; 2013 Mar; 118():49-54. PubMed ID: 23399878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.
    Arends D; Schlummer M; Mäurer A; Markowski J; Wagenknecht U
    Waste Manag Res; 2015 Sep; 33(9):775-84. PubMed ID: 26111535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator.
    Richard G; Touhami S; Zeghloul T; Dascalescu L
    Waste Manag; 2017 Feb; 60():112-122. PubMed ID: 27425863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.
    Zeng X; Li J; Xie H; Liu L
    Chemosphere; 2013 Oct; 93(7):1288-94. PubMed ID: 23910241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separating and recovering Pb from copper-rich particles of crushed waste printed circuit boards by evaporation and condensation.
    Zhan L; Xu Z
    Environ Sci Technol; 2011 Jun; 45(12):5359-65. PubMed ID: 21595432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing and developing a continuous separation system for the wet process separation of aluminum and polyethylene in aseptic composite packaging waste.
    Yan D; Peng Z; Liu Y; Li L; Huang Q; Xie M; Wang Q
    Waste Manag; 2015 Jan; 35():21-8. PubMed ID: 25458854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil.
    Araújo MG; Magrini A; Mahler CF; Bilitewski B
    Waste Manag; 2012 Feb; 32(2):335-42. PubMed ID: 22014584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs.
    Jordão H; Sousa AJ; Carvalho MT
    Waste Manag; 2016 Feb; 48():366-373. PubMed ID: 26470828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.
    Xue M; Yan G; Li J; Xu Z
    Environ Sci Technol; 2012 Oct; 46(19):10556-63. PubMed ID: 22924535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic separation for multi-size granule of crushed printed circuit board waste using two-roll separator.
    Wu J; Li J; Xu Z
    J Hazard Mater; 2008 Nov; 159(2-3):230-4. PubMed ID: 18346846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.