These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 22572167)
1. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): influence of calcium, magnesium, sodium, potassium and pH. Wang X; Hua L; Ma Y Chemosphere; 2012 Sep; 89(1):89-95. PubMed ID: 22572167 [TBL] [Abstract][Full Text] [Related]
2. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture. Li B; Zhang X; Wang X; Ma Y Ecotoxicol Environ Saf; 2009 Sep; 72(6):1760-6. PubMed ID: 19481262 [TBL] [Abstract][Full Text] [Related]
3. Effect of cations on copper toxicity to wheat root: implications for the biotic ligand model. Luo XS; Li LZ; Zhou DM Chemosphere; 2008 Sep; 73(3):401-6. PubMed ID: 18585752 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare). Lock K; De Schamphelaere KA; Becaus S; Criel P; Van Eeckhout H; Janssen CR Environ Pollut; 2007 Jun; 147(3):626-33. PubMed ID: 17134808 [TBL] [Abstract][Full Text] [Related]
5. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare). Lock K; Van Eeckhout H; De Schamphelaere KA; Criel P; Janssen CR Chemosphere; 2007 Jan; 66(7):1346-52. PubMed ID: 16908050 [TBL] [Abstract][Full Text] [Related]
6. Development of a biotic ligand model for acute zinc toxicity to barley root elongation. Wang X; Li B; Ma Y; Hua L Ecotoxicol Environ Saf; 2010 Sep; 73(6):1272-8. PubMed ID: 20570355 [TBL] [Abstract][Full Text] [Related]
7. A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. de Schamphelaere KA; Janssen CR Environ Sci Technol; 2002 Jan; 36(1):48-54. PubMed ID: 11817370 [TBL] [Abstract][Full Text] [Related]
8. Modeling acute toxicity of metal mixtures to wheat (Triticum aestivum L.) using the biotic ligand model-based toxic units method. Wu M; Wang X; Jia Z; De Schamphelaere K; Ji D; Li X; Chen X Sci Rep; 2017 Aug; 7(1):9443. PubMed ID: 28842695 [TBL] [Abstract][Full Text] [Related]
9. Modeling of acute cadmium toxicity in solution to barley root elongation using biotic ligand model theory. Wang X; Wu M; Ma J; Chen X; Hua L J Environ Sci (China); 2016 Apr; 42():112-118. PubMed ID: 27090701 [TBL] [Abstract][Full Text] [Related]
10. Identification of hydroxyl copper toxicity to barley (Hordeum vulgare) root elongation in solution culture. Wang X; Ma Y; Hua L; McLaughlin MJ Environ Toxicol Chem; 2009 Mar; 28(3):662-7. PubMed ID: 18980394 [TBL] [Abstract][Full Text] [Related]
11. Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare). Lock K; Criel P; De Schamphelaere KA; Van Eeckhout H; Janssen CR Ecotoxicol Environ Saf; 2007 Oct; 68(2):299-304. PubMed ID: 17240449 [TBL] [Abstract][Full Text] [Related]
12. Development of a multi-species biotic ligand model predicting the toxicity of trivalent chromium to barley root elongation in solution culture. Song N; Zhong X; Li B; Li J; Wei D; Ma Y PLoS One; 2014; 9(8):e105174. PubMed ID: 25119269 [TBL] [Abstract][Full Text] [Related]
13. Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. Le TT; Peijnenburg WJ; Hendriks AJ; Vijver MG Environ Toxicol Chem; 2012 Feb; 31(2):355-9. PubMed ID: 22105443 [TBL] [Abstract][Full Text] [Related]
14. The acute toxicity of nickel to Daphnia magna: predictive capacity of bioavailability models in artificial and natural waters. Deleebeeck NM; De Schamphelaere KA; Heijerick DG; Bossuyt BT; Janssen CR Ecotoxicol Environ Saf; 2008 May; 70(1):67-78. PubMed ID: 17624431 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a chronic copper biotic ligand model for Ceriodaphnia dubia. Schwartz ML; Vigneault B Aquat Toxicol; 2007 Aug; 84(2):247-54. PubMed ID: 17673307 [TBL] [Abstract][Full Text] [Related]
16. Development of a chronic zinc biotic ligand model for Daphnia magna. Heijerick DG; De Schamphelaere KA; Van Sprang PA; Janssen CR Ecotoxicol Environ Saf; 2005 Sep; 62(1):1-10. PubMed ID: 15978285 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the Biotic Ligand Model relative to other site-specific criteria derivation methods for copper in surface waters with elevated hardness. Van Genderen E; Gensemer R; Smith C; Santore R; Ryan A Aquat Toxicol; 2007 Aug; 84(2):279-91. PubMed ID: 17681387 [TBL] [Abstract][Full Text] [Related]
18. Validation of Cu toxicity to barley root elongation in soil with a Terrestrial Biotic Ligand Model developed from sand culture. Lin Y; Allen HE; Di Toro DM Ecotoxicol Environ Saf; 2018 Feb; 148():336-345. PubMed ID: 29091836 [TBL] [Abstract][Full Text] [Related]
19. Effect of major ions on the toxicity of copper to Hyalella azteca and implications for the biotic ligand model. Borgmann U; Nowierski M; Dixon DG Aquat Toxicol; 2005 Jul; 73(3):268-87. PubMed ID: 15878788 [TBL] [Abstract][Full Text] [Related]
20. Development of a biotic ligand model to predict the acute toxicity of cadmium to Daphnia pulex. Clifford M; McGeer JC Aquat Toxicol; 2010 Jun; 98(1):1-7. PubMed ID: 20189256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]