These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 22572623)
1. Mercury sources and fate in the Gulf of Maine. Sunderland EM; Amirbahman A; Burgess NM; Dalziel J; Harding G; Jones SH; Kamai E; Karagas MR; Shi X; Chen CY Environ Res; 2012 Nov; 119():27-41. PubMed ID: 22572623 [TBL] [Abstract][Full Text] [Related]
2. Mercury in the Gulf of Mexico: sources to receptors. Harris R; Pollman C; Landing W; Evans D; Axelrad D; Hutchinson D; Morey SL; Rumbold D; Dukhovskoy D; Adams DH; Vijayaraghavan K; Holmes C; Atkinson RD; Myers T; Sunderland E Environ Res; 2012 Nov; 119():42-52. PubMed ID: 23098613 [TBL] [Abstract][Full Text] [Related]
3. A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico. Harris R; Pollman C; Hutchinson D; Landing W; Axelrad D; Morey SL; Dukhovskoy D; Vijayaraghavan K Environ Res; 2012 Nov; 119():53-63. PubMed ID: 23102631 [TBL] [Abstract][Full Text] [Related]
4. Mercury in the atmospheric and coastal environments of Mexico. Ruelas-Inzunza J; Delgado-Alvarez C; Frías-Espericueta M; Páez-Osuna F Rev Environ Contam Toxicol; 2013; 226():65-99. PubMed ID: 23625130 [TBL] [Abstract][Full Text] [Related]
5. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts. Guéguen M; Amiard JC; Arnich N; Badot PM; Claisse D; Guérin T; Vernoux JP Rev Environ Contam Toxicol; 2011; 213():55-111. PubMed ID: 21541848 [TBL] [Abstract][Full Text] [Related]
6. Relative importance of atmospheric and riverine mercury sources to the northern Gulf of Mexico. Rice GE; Senn DB; Shine JP Environ Sci Technol; 2009 Jan; 43(2):415-22. PubMed ID: 19238973 [TBL] [Abstract][Full Text] [Related]
7. Contemporary and preindustrial mass budgets of mercury in the Hudson Bay Marine System: the role of sediment recycling. Hare A; Stern GA; Macdonald RW; Kuzyk ZZ; Wang F Sci Total Environ; 2008 Nov; 406(1-2):190-204. PubMed ID: 18765159 [TBL] [Abstract][Full Text] [Related]
8. Isotopic tracing of mercury sources in estuarine-inner shelf sediments of the East China Sea. Sun X; Yin R; Hu L; Guo Z; Hurley JP; Lepak RF; Li X Environ Pollut; 2020 Jul; 262():114356. PubMed ID: 32443195 [TBL] [Abstract][Full Text] [Related]
9. Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Chen CY; Dionne M; Mayes BM; Ward DM; Sturup S; Jackson BP Environ Sci Technol; 2009 Mar; 43(6):1804-10. PubMed ID: 19368175 [TBL] [Abstract][Full Text] [Related]
11. A decision framework for possible remediation of contaminated sediments in the River Kymijoki, Finland. Verta M; Kiviranta H; Salo S; Malve O; Korhonen M; Verkasalo PK; Ruokojärvi P; Rossi E; Hanski A; Päätalo K; Vartiainen T Environ Sci Pollut Res Int; 2009 Jan; 16(1):95-105. PubMed ID: 18941816 [TBL] [Abstract][Full Text] [Related]
12. Spatial distribution of mercury in seawater, sediment, and seafood from the Hardangerfjord ecosystem, Norway. Azad AM; Frantzen S; Bank MS; Johnsen IA; Tessier E; Amouroux D; Madsen L; Maage A Sci Total Environ; 2019 Jun; 667():622-637. PubMed ID: 30833261 [TBL] [Abstract][Full Text] [Related]
13. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000. Sunderland EM; Dalziel J; Heyes A; Branfireun BA; Krabbenhoft DP; Gobas FA Environ Sci Technol; 2010 Mar; 44(5):1698-704. PubMed ID: 20121085 [TBL] [Abstract][Full Text] [Related]
14. Spatial and temporal trends of mercury in the aquatic food web of the lower Penobscot River, Maine, USA, affected by a chlor-alkali plant. Kopec AD; Kidd KA; Fisher NS; Bowen M; Francis C; Payne K; Bodaly RA Sci Total Environ; 2019 Feb; 649():770-791. PubMed ID: 30176487 [TBL] [Abstract][Full Text] [Related]
15. Changes in mercury exposure of marine birds breeding in the Gulf of Maine, 2008-2013. Stenhouse IJ; Adams EM; Goyette JL; Regan KJ; Goodale MW; Evers DC Mar Pollut Bull; 2018 Mar; 128():156-161. PubMed ID: 29571358 [TBL] [Abstract][Full Text] [Related]
16. Mercury biogeochemical cycling in the ocean and policy implications. Mason RP; Choi AL; Fitzgerald WF; Hammerschmidt CR; Lamborg CH; Soerensen AL; Sunderland EM Environ Res; 2012 Nov; 119():101-17. PubMed ID: 22559948 [TBL] [Abstract][Full Text] [Related]
17. Mercury in abiotic matrices of Clear Lake, California: human health and ecotoxicological implications. Suchanek TH; Eagles-Smith CA; Slotton DG; Harner EJ; Adam DP Ecol Appl; 2008 Dec; 18(8 Suppl):A128-57. PubMed ID: 19475922 [TBL] [Abstract][Full Text] [Related]
18. Identification of the influence of distal inputs on mercury loading across the mid Great Lakes region using chemical sediment chronologies. Ruhala SS; Long DT; Vannier RG; Parsons MJ; Giesy JP Chemosphere; 2018 Dec; 213():53-64. PubMed ID: 30212719 [TBL] [Abstract][Full Text] [Related]
19. Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. Hare AA; Stern GA; Kuzyk ZZ; Macdonald RW; Johannessen SC; Wang F Environ Sci Technol; 2010 Aug; 44(15):5805-11. PubMed ID: 20617840 [TBL] [Abstract][Full Text] [Related]
20. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Sherman LS; Blum JD Sci Total Environ; 2013 Mar; 448():163-75. PubMed ID: 23062970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]