BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22572764)

  • 1. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver.
    Andreano A; Brace CL
    Cardiovasc Intervent Radiol; 2013 Apr; 36(2):505-11. PubMed ID: 22572764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue.
    Andreano A; Huang Y; Meloni MF; Lee FT; Brace C
    Med Phys; 2010 Jun; 37(6):2967-73. PubMed ID: 20632609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of tissue deformation during radiofrequency and microwave ablation procedures: Influence of output energy delivery.
    Liu D; Brace CL
    Med Phys; 2019 Sep; 46(9):4127-4134. PubMed ID: 31260115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-powered microwave ablation with a small-gauge, gas-cooled antenna: initial ex vivo and in vivo results.
    Lubner MG; Hinshaw JL; Andreano A; Sampson L; Lee FT; Brace CL
    J Vasc Interv Radiol; 2012 Mar; 23(3):405-11. PubMed ID: 22277272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.
    Laeseke PF; Lee FT; Sampson LA; van der Weide DW; Brace CL
    J Vasc Interv Radiol; 2009 Sep; 20(9):1224-9. PubMed ID: 19616970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation.
    Schramm W; Yang D; Haemmerich D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5013-6. PubMed ID: 17946669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers.
    Yu J; Liang P; Yu X; Liu F; Chen L; Wang Y
    Eur J Radiol; 2011 Jul; 79(1):124-30. PubMed ID: 20047812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superparamagnetic iron oxide nanoparticle enhanced percutaneous microwave ablation: Ex-vivo characterization using magnetic resonance thermometry.
    Bhagavatula SK; Panikkanvalappil SR; Tokuda J; Levesque V; Tatarova Z; Liu G; Markert JE; Jonas O
    Med Phys; 2024 May; 51(5):3195-3206. PubMed ID: 38513254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model.
    Brace CL; Hinshaw JL; Laeseke PF; Sampson LA; Lee FT
    Radiology; 2009 Jun; 251(3):705-11. PubMed ID: 19336667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo evaluation of the thermal patterns and lesions of catheter ablation with a microwave monopole antenna.
    Keane D; Ruskin J; Norris N; Chapelon PA; Bérubé D
    J Interv Card Electrophysiol; 2004 Apr; 10(2):111-9. PubMed ID: 15014211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave, irrigated, pulsed, or conventional radiofrequency energy source: which energy source for which catheter ablation?
    Erdogan A; Grumbrecht S; Neumann T; Neuzner J; Pitschner HF
    Pacing Clin Electrophysiol; 2003 Jan; 26(1P2):504-6. PubMed ID: 12687878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave catheter ablation of myocardium in vitro. Assessment of the characteristics of tissue heating and injury.
    Whayne JG; Nath S; Haines DE
    Circulation; 1994 May; 89(5):2390-5. PubMed ID: 8181165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of microwave coagulation using a new type electrode with radiofrequency ablation in the liver of living animals].
    Shibata T; Morita T; Okuyama M; Kitada M; Tsukahara Y; Ikeda K; Suzuki R; Shimano T; Ishida T
    Gan To Kagaku Ryoho; 2001 Oct; 28(11):1595-8. PubMed ID: 11707988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model.
    Bedoya M; del Rio AM; Chiang J; Brace CL
    Med Phys; 2014 Dec; 41(12):123301. PubMed ID: 25471983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation.
    Curto S; Taj-Eldin M; Fairchild D; Prakash P
    Med Phys; 2015 Nov; 42(11):6152-61. PubMed ID: 26520708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model.
    Pillai K; Akhter J; Chua TC; Shehata M; Alzahrani N; Al-Alem I; Morris DL
    Medicine (Baltimore); 2015 Mar; 94(9):e580. PubMed ID: 25738477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal ablation for the treatment of abdominal tumors.
    Brace CL; Hinshaw JL; Lubner MG
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21445029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of microwave and radio frequency catheter ablation in a myocardium-equivalent phantom model.
    Wonnell TL; Stauffer PR; Langberg JJ
    IEEE Trans Biomed Eng; 1992 Oct; 39(10):1086-95. PubMed ID: 1452175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal ablation a comparison of thermal dose required for radiofrequency-, microwave-, and laser-induced coagulation in an ex vivo bovine liver model.
    Mertyna P; Goldberg W; Yang W; Goldberg SN
    Acad Radiol; 2009 Dec; 16(12):1539-48. PubMed ID: 19836267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.