These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22572788)

  • 1. Saccharomyces cerevisiae in directed evolution: An efficient tool to improve enzymes.
    Gonzalez-Perez D; Garcia-Ruiz E; Alcalde M
    Bioeng Bugs; 2012; 3(3):172-7. PubMed ID: 22572788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed Evolution Method in Saccharomyces cerevisiae: Mutant Library Creation and Screening.
    Viña-Gonzalez J; Gonzalez-Perez D; Alcalde M
    J Vis Exp; 2016 Apr; (110):e53761. PubMed ID: 27077451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis protocols in Saccharomyces cerevisiae by in vivo overlap extension.
    Alcalde M
    Methods Mol Biol; 2010; 634():3-14. PubMed ID: 20676972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption.
    Reznicek O; Facey SJ; de Waal PP; Teunissen AW; de Bont JA; Nijland JG; Driessen AJ; Hauer B
    J Appl Microbiol; 2015 Jul; 119(1):99-111. PubMed ID: 25882005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polishing the craft of genetic diversity creation in directed evolution.
    Tee KL; Wong TS
    Biotechnol Adv; 2013 Dec; 31(8):1707-21. PubMed ID: 24012599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) for directed enzyme evolution.
    Gonzalez-Perez D; Molina-Espeja P; Garcia-Ruiz E; Alcalde M
    PLoS One; 2014; 9(3):e90919. PubMed ID: 24614282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering.
    Si T; Luo Y; Bao Z; Zhao H
    ACS Synth Biol; 2015 Mar; 4(3):283-91. PubMed ID: 24758359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shuffling the Neutral Drift of Unspecific Peroxygenase in Saccharomyces cerevisiae.
    Martin-Diaz J; Paret C; García-Ruiz E; Molina-Espeja P; Alcalde M
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29776931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNAi-Assisted Genome Evolution (RAGE) in Saccharomyces cerevisiae.
    Si T; Zhao H
    Methods Mol Biol; 2016; 1470():183-98. PubMed ID: 27581294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focused Directed Evolution of Aryl-Alcohol Oxidase in Saccharomyces cerevisiae by Using Chimeric Signal Peptides.
    Viña-Gonzalez J; Gonzalez-Perez D; Ferreira P; Martinez AT; Alcalde M
    Appl Environ Microbiol; 2015 Sep; 81(18):6451-62. PubMed ID: 26162870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Appl Environ Microbiol; 2012 Aug; 78(16):5708-16. PubMed ID: 22685138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the bounds of evolution: Synthetic chromosomes… How and what for?
    Koszul R
    C R Biol; 2016; 339(7-8):324-8. PubMed ID: 27289455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rationally designed perturbation factor drives evolution in Saccharomyces cerevisiae for industrial application.
    Xu X; Liu C; Niu C; Wang J; Zheng F; Li Y; Li Q
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):869-880. PubMed ID: 30076552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolving thermostability in mutant libraries of ligninolytic oxidoreductases expressed in yeast.
    García-Ruiz E; Maté D; Ballesteros A; Martinez AT; Alcalde M
    Microb Cell Fact; 2010 Mar; 9():17. PubMed ID: 20298573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Directed evolution of promoter and cellular transcription machinery and its application in microbial metabolic engineering--a review].
    Zhao X; Jiang R; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1312-5. PubMed ID: 19938472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using continuous directed evolution to improve enzymes for plant applications.
    García-García JD; Van Gelder K; Joshi J; Bathe U; Leong BJ; Bruner SD; Liu CC; Hanson AD
    Plant Physiol; 2022 Feb; 188(2):971-983. PubMed ID: 34718794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed evolution and the creation of enantioselective biocatalysts.
    Jaeger KE; Eggert T; Eipper A; Reetz MT
    Appl Microbiol Biotechnol; 2001 May; 55(5):519-30. PubMed ID: 11414315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae.
    Stuckey S; Storici F
    Methods Enzymol; 2013; 533():103-31. PubMed ID: 24182920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional expression of aryl-alcohol oxidase in Saccharomyces cerevisiae and Pichia pastoris by directed evolution.
    Viña-Gonzalez J; Elbl K; Ponte X; Valero F; Alcalde M
    Biotechnol Bioeng; 2018 Jul; 115(7):1666-1674. PubMed ID: 29532900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae.
    Solis-Escalante D; Kuijpers NG; van der Linden FH; Pronk JT; Daran JM; Daran-Lapujade P
    FEMS Yeast Res; 2014 Aug; 14(5):741-54. PubMed ID: 24833416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.