These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22572947)

  • 21. Kv3 K
    Olsen T; Capurro A; Pilati N; Large CH; Hamann M
    Neuropharmacology; 2018 May; 133():319-333. PubMed ID: 29421326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells.
    Zhang S; Oertel D
    J Neurophysiol; 1994 Mar; 71(3):914-30. PubMed ID: 8201432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tonotopic Specializations in Number, Size, and Reversal Potential of GABAergic Inputs Fine-Tune Temporal Coding at Avian Cochlear Nucleus.
    Al-Yaari M; Onogi C; Yamada R; Adachi R; Kondo D; Kuba H
    J Neurosci; 2021 Oct; 41(43):8904-8916. PubMed ID: 34518306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycinergic synaptic transmission in the cochlear nucleus of mice with normal hearing and age-related hearing loss.
    Xie R; Manis PB
    J Neurophysiol; 2013 Oct; 110(8):1848-59. PubMed ID: 23904491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmacological evidence of inhibitory and disinhibitory neuronal circuits in dorsal cochlear nucleus.
    Davis KA; Young ED
    J Neurophysiol; 2000 Feb; 83(2):926-40. PubMed ID: 10669505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptic physiology in the cochlear nucleus angularis of the chick.
    MacLeod KM; Carr CE
    J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustained firing of cartwheel cells in the dorsal cochlear nucleus evokes endocannabinoid release and retrograde suppression of parallel fiber synapses.
    Sedlacek M; Tipton PW; Brenowitz SD
    J Neurosci; 2011 Nov; 31(44):15807-17. PubMed ID: 22049424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A map of functional synaptic connectivity in the mouse anteroventral cochlear nucleus.
    Campagnola L; Manis PB
    J Neurosci; 2014 Feb; 34(6):2214-30. PubMed ID: 24501361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic mechanisms for generating temporal diversity of auditory representation in the dorsal cochlear nucleus.
    Zhou M; Li YT; Yuan W; Tao HW; Zhang LI
    J Neurophysiol; 2015 Mar; 113(5):1358-68. PubMed ID: 25475349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of GIRK channels by muscarinic receptors and group II metabotropic glutamate receptors suppresses Golgi cell activity in the cochlear nucleus of mice.
    Irie T; Fukui I; Ohmori H
    J Neurophysiol; 2006 Nov; 96(5):2633-44. PubMed ID: 16855110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serotonergic regulation of excitability of principal cells of the dorsal cochlear nucleus.
    Tang ZQ; Trussell LO
    J Neurosci; 2015 Mar; 35(11):4540-51. PubMed ID: 25788672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Auditory Golgi cells are interconnected predominantly by electrical synapses.
    Yaeger DB; Trussell LO
    J Neurophysiol; 2016 Aug; 116(2):540-51. PubMed ID: 27121584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity-dependent modulation of inhibitory synaptic kinetics in the cochlear nucleus.
    Nerlich J; Keine C; Rübsamen R; Burger RM; Milenkovic I
    Front Neural Circuits; 2014; 8():145. PubMed ID: 25565972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fidelity of complex spike-mediated synaptic transmission between inhibitory interneurons.
    Roberts MT; Bender KJ; Trussell LO
    J Neurosci; 2008 Sep; 28(38):9440-50. PubMed ID: 18799676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spontaneous and sound-evoked discharge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrate cat.
    Parham K; Kim DO
    J Neurophysiol; 1995 Feb; 73(2):550-61. PubMed ID: 7760117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus.
    Tzounopoulos T; Kim Y; Oertel D; Trussell LO
    Nat Neurosci; 2004 Jul; 7(7):719-25. PubMed ID: 15208632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input.
    Gardner SM; Trussell LO; Oertel D
    J Neurosci; 1999 Oct; 19(20):8721-9. PubMed ID: 10516291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus.
    Stefanescu RA; Shore SE
    J Neurophysiol; 2017 Mar; 117(3):1229-1238. PubMed ID: 28003407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.