These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22573150)

  • 1. The heavy metal tolerant soil bacterium Achromobacter sp. AO22 contains a unique copper homeostasis locus and two mer operons.
    Ng SP; Palombo EA; Bhave M
    J Microbiol Biotechnol; 2012 Jun; 22(6):742-53. PubMed ID: 22573150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a copper-responsive promoter and development of a copper biosensor in the soil bacterium Achromobacter sp. AO22.
    Ng SP; Palombo EA; Bhave M
    World J Microbiol Biotechnol; 2012 May; 28(5):2221-8. PubMed ID: 22806045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22.
    Ng SP; Davis B; Palombo EA; Bhave M
    BMC Res Notes; 2009 Mar; 2():38. PubMed ID: 19284535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Environ Microbiol; 2008 Dec; 10(12):3284-94. PubMed ID: 18707611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile.
    Altimira F; Yáñez C; Bravo G; González M; Rojas LA; Seeger M
    BMC Microbiol; 2012 Sep; 12():193. PubMed ID: 22950448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae.
    Lim CK; Cooksey DA
    J Bacteriol; 1993 Jul; 175(14):4492-8. PubMed ID: 8331076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae.
    Mills SD; Lim CK; Cooksey DA
    Mol Gen Genet; 1994 Aug; 244(4):341-51. PubMed ID: 8078459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004.
    Brown NL; Barrett SR; Camakaris J; Lee BT; Rouch DA
    Mol Microbiol; 1995 Sep; 17(6):1153-66. PubMed ID: 8594334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae.
    Mills SD; Jasalavich CA; Cooksey DA
    J Bacteriol; 1993 Mar; 175(6):1656-64. PubMed ID: 8449873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the copper-sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering.
    Kang Y; Lee W; Kim S; Jang G; Kim BG; Yoon Y
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1513-1521. PubMed ID: 29243083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress.
    Schelder S; Zaade D; Litsanov B; Bott M; Brocker M
    PLoS One; 2011; 6(7):e22143. PubMed ID: 21799779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the CopR regulon of Lactococcus lactis IL1403.
    Magnani D; Barré O; Gerber SD; Solioz M
    J Bacteriol; 2008 Jan; 190(2):536-45. PubMed ID: 17993525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae.
    Odermatt A; Suter H; Krapf R; Solioz M
    J Biol Chem; 1993 Jun; 268(17):12775-9. PubMed ID: 8048974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics and taxonomy of the glyphosate-degrading, copper-tolerant rhizospheric bacterium Achromobacter insolitus LCu2.
    Kryuchkova YV; Neshko AA; Gogoleva NE; Balkin AS; Safronova VI; Kargapolova KY; Shagimardanova EI; Gogolev YV; Burygin GL
    Antonie Van Leeuwenhoek; 2024 Jul; 117(1):105. PubMed ID: 39043973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae.
    Magnani D; Solioz M
    Biometals; 2005 Aug; 18(4):407-12. PubMed ID: 16158233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of copper resistance and accumulation in bacteria.
    Cooksey DA
    FEMS Microbiol Rev; 1994 Aug; 14(4):381-6. PubMed ID: 7917425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34.
    Monchy S; Benotmane MA; Wattiez R; van Aelst S; Auquier V; Borremans B; Mergeay M; Taghavi S; van der Lelie D; Vallaeys T
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1765-1776. PubMed ID: 16735739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins.
    Cha JS; Cooksey DA
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):8915-9. PubMed ID: 1924351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Two-Component System CopRS Maintains Subfemtomolar Levels of Free Copper in the Periplasm of Pseudomonas aeruginosa Using a Phosphatase-Based Mechanism.
    Novoa-Aponte L; Xu C; Soncini FC; Argüello JM
    mSphere; 2020 Dec; 5(6):. PubMed ID: 33361129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cop-like operon: structure and organization in species of the Lactobacillale order.
    Reyes A; Leiva A; Cambiazo V; Méndez MA; González M
    Biol Res; 2006; 39(1):87-93. PubMed ID: 16629168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.