BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22573160)

  • 1. Immobilization of keratinolytic metalloprotease from Chryseobacterium sp. strain kr6 on glutaraldehyde-activated chitosan.
    Silveira ST; Gemelli S; Segalin J; Brandellli A
    J Microbiol Biotechnol; 2012 Jun; 22(6):818-25. PubMed ID: 22573160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6.
    Riffel A; Brandelli A; Bellato Cde M; Souza GH; Eberlin MN; Tavares FC
    J Biotechnol; 2007 Feb; 128(3):693-703. PubMed ID: 17187889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.
    Ispirli Doğaç Y; Deveci I; Teke M; Mercimek B
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():429-35. PubMed ID: 25063138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.
    Gür SD; İdil N; Aksöz N
    Appl Biochem Biotechnol; 2018 Feb; 184(2):538-552. PubMed ID: 28762007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate-chitosan beads.
    Zhou ZD; Li GY; Li YJ
    Int J Biol Macromol; 2010 Jul; 47(1):21-6. PubMed ID: 20398691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization on chitosan of a thermophilic trehalose synthase from Thermus thermophilus HJ6.
    Kim HJ; Kim AR; Jeon SJ
    J Microbiol Biotechnol; 2010 Mar; 20(3):513-7. PubMed ID: 20372021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of tyrosinase on chitosan-clay composite beads.
    Dinçer A; Becerik S; Aydemir T
    Int J Biol Macromol; 2012 Apr; 50(3):815-20. PubMed ID: 22155214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium.
    Wang SL; Hsu WT; Liang TW; Yen YH; Wang CL
    Bioresour Technol; 2008 Sep; 99(13):5679-86. PubMed ID: 18037288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of beta-fructofuranosidase from Aspergillus japonicus on chitosan using tris(hydroxymethyl)phosphine or glutaraldehyde as a coupling agent.
    Cheng TC; Duan KJ; Sheu DC
    Biotechnol Lett; 2005 Mar; 27(5):335-8. PubMed ID: 15834795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of lipase on porous monodisperse chitosan microspheres.
    Chen Y; Liu J; Xia C; Zhao C; Ren Z; Zhang W
    Biotechnol Appl Biochem; 2015; 62(1):101-6. PubMed ID: 24823273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics and kinetics of heat inactivation of a novel keratinase from Chryseobacterium sp. strain kr6.
    Silveira ST; Casarin F; Gemelli S; Brandelli A
    Appl Biochem Biotechnol; 2010 Sep; 162(2):548-60. PubMed ID: 19936635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of catalase on chitosan and amino acid- modified chitosan beads.
    Başak E; Aydemir T
    Artif Cells Nanomed Biotechnol; 2013 Aug; 41(4):269-75. PubMed ID: 23316810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of acid phosphatase from Vigna aconitifolia seeds on chitosan beads and its characterization.
    Srivastava PK; Anand A
    Int J Biol Macromol; 2014 Mar; 64():150-4. PubMed ID: 24309514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fructo-oligosaccharides production by an Aspergillus aculeatus commercial enzyme preparation with fructosyltransferase activity covalently immobilized on Fe
    de Oliveira RL; da Silva MF; da Silva SP; de Araújo ACV; Cavalcanti JVFL; Converti A; Porto TS
    Int J Biol Macromol; 2020 May; 150():922-929. PubMed ID: 32070737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions.
    Vazquez-Ortega PG; Alcaraz-Fructuoso MT; Rojas-Contreras JA; López-Miranda J; Fernandez-Lafuente R
    Enzyme Microb Technol; 2018 Mar; 110():38-45. PubMed ID: 29310854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment.
    Ortega N; Perez-Mateos M; Pilar MC; Busto MD
    J Agric Food Chem; 2009 Jan; 57(1):109-15. PubMed ID: 19061308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, procerain B.
    Singh AN; Singh S; Suthar N; Dubey VK
    J Agric Food Chem; 2011 Jun; 59(11):6256-62. PubMed ID: 21528916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-DOPA production by immobilized tyrosinase.
    Carvalho GM; Alves TL; Freire DM
    Appl Biochem Biotechnol; 2000; 84-86():791-800. PubMed ID: 10849837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of penicillin G acylase multipoint immobilization on to glutaraldehyde-chitosan beads.
    Adriano WS; Filho EH; Silva JA; Gonçalves LR
    Biotechnol Appl Biochem; 2005 Jun; 41(Pt 3):201-7. PubMed ID: 15239674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced stability of immobilized keratinolytic protease on electrospun nanofibers.
    Sarathi M; Doraiswamy N; Pennathur G
    Prep Biochem Biotechnol; 2019; 49(7):695-703. PubMed ID: 31066620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.