BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22573320)

  • 1. Sequestration of Sup35 by aggregates of huntingtin fragments causes toxicity of [PSI+] yeast.
    Zhao X; Park YN; Todor H; Moomau C; Masison D; Eisenberg E; Greene LE
    J Biol Chem; 2012 Jul; 287(28):23346-55. PubMed ID: 22573320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rnq1 protein protects [PSI^(+)] prion from effect of the PNM mutation].
    Bondarev SA; Likholetova DV; Belousov MV; Zhouravleva GA
    Mol Biol (Mosk); 2017; 51(2):367-371. PubMed ID: 28537243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant.
    Sideri TC; Koloteva-Levine N; Tuite MF; Grant CM
    J Biol Chem; 2011 Nov; 286(45):38924-31. PubMed ID: 21832086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].
    Du Z; Li L
    Genetics; 2014 Jun; 197(2):685-700. PubMed ID: 24727082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyglutamine toxicity is controlled by prion composition and gene dosage in yeast.
    Gong H; Romanova NV; Allen KD; Chandramowlishwaran P; Gokhale K; Newnam GP; Mieczkowski P; Sherman MY; Chernoff YO
    PLoS Genet; 2012; 8(4):e1002634. PubMed ID: 22536159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae.
    Choe YJ; Ryu Y; Kim HJ; Seok YJ
    Eukaryot Cell; 2009 Jul; 8(7):968-76. PubMed ID: 19411620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast J-protein Sis1 prevents prion toxicity by moderating depletion of prion protein.
    Kumar J; Reidy M; Masison DC
    Genetics; 2021 Oct; 219(2):. PubMed ID: 34849884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation.
    Speldewinde SH; Doronina VA; Tuite MF; Grant CM
    PLoS Genet; 2017 Apr; 13(4):e1006708. PubMed ID: 28369054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast Sup35 Prion Structure: Two Types, Four Parts, Many Variants.
    Dergalev AA; Alexandrov AI; Ivannikov RI; Ter-Avanesyan MD; Kushnirov VV
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31146333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.
    Afanasieva EG; Kushnirov VV; Tuite MF; Ter-Avanesyan MD
    J Biol Chem; 2011 May; 286(18):15773-80. PubMed ID: 21454674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast.
    Mathur V; Taneja V; Sun Y; Liebman SW
    Mol Biol Cell; 2010 May; 21(9):1449-61. PubMed ID: 20219972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions.
    Bradley ME; Liebman SW
    Mol Microbiol; 2004 Mar; 51(6):1649-59. PubMed ID: 15009892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human J-protein DnaJB6b Cures a Subset of Saccharomyces cerevisiae Prions and Selectively Blocks Assembly of Structurally Related Amyloids.
    Reidy M; Sharma R; Roberts BL; Masison DC
    J Biol Chem; 2016 Feb; 291(8):4035-47. PubMed ID: 26702057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids.
    Salnikova AB; Kryndushkin DS; Smirnov VN; Kushnirov VV; Ter-Avanesyan MD
    J Biol Chem; 2005 Mar; 280(10):8808-12. PubMed ID: 15618222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae.
    Bailleul PA; Newnam GP; Steenbergen JN; Chernoff YO
    Genetics; 1999 Sep; 153(1):81-94. PubMed ID: 10471702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous aggregates promote de novo prion appearance via more than one mechanism.
    Arslan F; Hong JY; Kanneganti V; Park SK; Liebman SW
    PLoS Genet; 2015 Jan; 11(1):e1004814. PubMed ID: 25568955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast prion protein New1 can break Sup35 amyloid fibrils into fragments in an ATP-dependent manner.
    Inoue Y; Kawai-Noma S; Koike-Takeshita A; Taguchi H; Yoshida M
    Genes Cells; 2011 May; 16(5):545-56. PubMed ID: 21453424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Destabilizing interactions among [PSI(+)] and [PIN(+)] yeast prion variants.
    Bradley ME; Liebman SW
    Genetics; 2003 Dec; 165(4):1675-85. PubMed ID: 14704158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock protein 104 (Hsp104)-mediated curing of [
    Zhao X; Rodriguez R; Silberman RE; Ahearn JM; Saidha S; Cummins KC; Eisenberg E; Greene LE
    J Biol Chem; 2017 May; 292(21):8630-8641. PubMed ID: 28373280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.