These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22573320)

  • 21. Conformation preserved in a weak-to-strong or strong-to-weak [PSI+] conversion during transmission to Sup35 prion variants.
    Crist CG; Kurahashi H; Nakayashiki T; Nakamura Y
    Biochimie; 2006 May; 88(5):485-96. PubMed ID: 16364534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Identification of new genes that affect [PSI^(+)] prion toxicity in Saccharomyces cerevisiae yeast].
    Matveenko AG; Belousov MV; Bondarev SA; Moskalenko SE; Zhouravleva GA
    Mol Biol (Mosk); 2016; 50(5):803-813. PubMed ID: 27830682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.
    Liu S; Hossinger A; Hofmann JP; Denner P; Vorberg IM
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequestration of essential proteins causes prion associated toxicity in yeast.
    Vishveshwara N; Bradley ME; Liebman SW
    Mol Microbiol; 2009 Sep; 73(6):1101-14. PubMed ID: 19682262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonsense Mutations in the Yeast
    Trubitsina NP; Zemlyanko OM; Bondarev SA; Zhouravleva GA
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32121268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prion-dependent lethality of sup45 mutants in Saccharomyces cerevisiae.
    Kiktev D; Vechtomov SI; Zhouravleva G
    Prion; 2007; 1(2):136-43. PubMed ID: 19164896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation.
    Aslam K; Tsai CJ; Hazbun TR
    Prion; 2016 Nov; 10(6):444-465. PubMed ID: 27690738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of a yeast prion protein to an infectious form in bacteria.
    Garrity SJ; Sivanathan V; Dong J; Lindquist S; Hochschild A
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10596-601. PubMed ID: 20484678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The life of [PSI].
    Cox B; Tuite M
    Curr Genet; 2018 Feb; 64(1):1-8. PubMed ID: 28653109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The [PSI+] prion exists as a dynamic cloud of variants.
    Bateman DA; Wickner RB
    PLoS Genet; 2013; 9(1):e1003257. PubMed ID: 23382698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants.
    Shkundina IS; Kushnirov VV; Tuite MF; Ter-Avanesyan MD
    Genetics; 2006 Feb; 172(2):827-35. PubMed ID: 16272413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [PSI(+) ] prion variant establishment in yeast.
    Sharma J; Liebman SW
    Mol Microbiol; 2012 Nov; 86(4):866-81. PubMed ID: 22998111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prion and nonprion amyloids: a comparison inspired by the yeast Sup35 protein.
    Kushnirov VV; Vishnevskaya AB; Alexandrov IM; Ter-Avanesyan MD
    Prion; 2007; 1(3):179-84. PubMed ID: 19164899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based [PSI+] determinant in Saccharomyces cerevisiae.
    Kochneva-Pervukhova NV; Poznyakovski AI; Smirnov VN; Ter-Avanesyan MD
    Curr Genet; 1998 Aug; 34(2):146-51. PubMed ID: 9724418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation.
    Bondarev SA; Shchepachev VV; Kajava AV; Zhouravleva GA
    J Biol Chem; 2013 Oct; 288(40):28503-13. PubMed ID: 23965990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion.
    Doronina VA; Staniforth GL; Speldewinde SH; Tuite MF; Grant CM
    Mol Microbiol; 2015 Apr; 96(1):163-74. PubMed ID: 25601439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A protein polymerization cascade mediates toxicity of non-pathological human huntingtin in yeast.
    Serpionov GV; Alexandrov AI; Antonenko YN; Ter-Avanesyan MD
    Sci Rep; 2015 Dec; 5():18407. PubMed ID: 26673834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Modification of [PSI+] prion properties by the combination of amino acid changes within Sup35 protein N-domain].
    Bondarev SA; Shirokolobova ED; Trubitsyna NP; Zhuravleva GA
    Mol Biol (Mosk); 2014; 48(2):314-21. PubMed ID: 25850301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteolysis suppresses spontaneous prion generation in yeast.
    Okamoto A; Hosoda N; Tanaka A; Newnam GP; Chernoff YO; Hoshino SI
    J Biol Chem; 2017 Dec; 292(49):20113-20124. PubMed ID: 29038292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis.
    Goehler H; Dröge A; Lurz R; Schnoegl S; Chernoff YO; Wanker EE
    PLoS One; 2010 Mar; 5(3):e9642. PubMed ID: 20224794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.