BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22573623)

  • 21. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis.
    Lal S; Pacis LB; Smith HM
    Mol Plant; 2011 Nov; 4(6):1123-32. PubMed ID: 21653282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Floral development: an ABC gene chips in downstream.
    Dinneny JR; Yanofsky MF
    Curr Biol; 2004 Oct; 14(19):R840-1. PubMed ID: 15458662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification.
    Wang J; Bao J; Zhou B; Li M; Li X; Jin J
    New Phytol; 2021 Feb; 229(3):1566-1581. PubMed ID: 32964416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals.
    Pei H; Ma N; Tian J; Luo J; Chen J; Li J; Zheng Y; Chen X; Fei Z; Gao J
    Plant Physiol; 2013 Oct; 163(2):775-91. PubMed ID: 23933991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa).
    Zheng M; Wang Y; Wang Y; Wang C; Ren Y; Lv J; Peng C; Wu T; Liu K; Zhao S; Liu X; Guo X; Jiang L; Terzaghi W; Wan J
    New Phytol; 2015 Jun; 206(4):1476-90. PubMed ID: 25675970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
    Bemis SM; Lee JS; Shpak ED; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5323-33. PubMed ID: 24006425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana.
    Ishida T; Aida M; Takada S; Tasaka M
    Plant Cell Physiol; 2000 Jan; 41(1):60-7. PubMed ID: 10750709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The AtHB1 Transcription Factor Controls the miR164-CUC2 Regulatory Node to Modulate Leaf Development.
    Miguel VN; Manavella PA; Chan RL; Capella MA
    Plant Cell Physiol; 2020 Mar; 61(3):659-670. PubMed ID: 31868910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response.
    de Silva K; Laska B; Brown C; Sederoff HW; Khodakovskaya M
    J Exp Bot; 2011 May; 62(8):2679-89. PubMed ID: 21252258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Mechanisms of Floral Boundary Formation in Arabidopsis.
    Yu H; Huang T
    Int J Mol Sci; 2016 Mar; 17(3):317. PubMed ID: 26950117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco.
    Baucher M; Moussawi J; Vandeputte OM; Monteyne D; Mol A; PĂ©rez-Morga D; El Jaziri M
    Plant Biol (Stuttg); 2013 Sep; 15(5):892-8. PubMed ID: 23173976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana.
    Chen D; Yan W; Fu LY; Kaufmann K
    Nat Commun; 2018 Oct; 9(1):4534. PubMed ID: 30382087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis.
    Li XG; Su YH; Zhao XY; Li W; Gao XQ; Zhang XS
    Gene; 2010 Jan; 450(1-2):109-20. PubMed ID: 19913077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic interaction between GROWTH-REGULATING FACTOR and CUP-SHAPED COTYLEDON in organ separation.
    Lee BH; Jeon JO; Lee MM; Kim JH
    Plant Signal Behav; 2015; 10(2):e988071. PubMed ID: 25761011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
    Porri A; Torti S; Romera-Branchat M; Coupland G
    Development; 2012 Jun; 139(12):2198-209. PubMed ID: 22573618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis.
    Ito J; Sono T; Tasaka M; Furutani M
    Plant Cell Physiol; 2011 Mar; 52(3):539-52. PubMed ID: 21257604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The salicylic acid receptor NPR3 is a negative regulator of the transcriptional defense response during early flower development in Arabidopsis.
    Shi Z; Maximova S; Liu Y; Verica J; Guiltinan MJ
    Mol Plant; 2013 May; 6(3):802-16. PubMed ID: 22986789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis.
    Larue CT; Wen J; Walker JC
    Plant J; 2009 May; 58(3):450-63. PubMed ID: 19154203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interspecific complementation-restoration of phenotype in Arabidopsis cuc2cuc3 mutant by sugarcane CUC2 gene.
    Aslam M; She Z; Jakada BH; Fakher B; Greaves JG; Yan M; Chen Y; Zheng P; Cheng Y; Qin Y
    BMC Plant Biol; 2022 Jan; 22(1):47. PubMed ID: 35065620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution boundary analysis during Arabidopsis thaliana flower development.
    Breuil-Broyer S; Morel P; de Almeida-Engler J; Coustham V; Negrutiu I; Trehin C
    Plant J; 2004 Apr; 38(1):182-92. PubMed ID: 15053771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.