These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22573623)

  • 21. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis.
    Lal S; Pacis LB; Smith HM
    Mol Plant; 2011 Nov; 4(6):1123-32. PubMed ID: 21653282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Floral development: an ABC gene chips in downstream.
    Dinneny JR; Yanofsky MF
    Curr Biol; 2004 Oct; 14(19):R840-1. PubMed ID: 15458662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification.
    Wang J; Bao J; Zhou B; Li M; Li X; Jin J
    New Phytol; 2021 Feb; 229(3):1566-1581. PubMed ID: 32964416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals.
    Pei H; Ma N; Tian J; Luo J; Chen J; Li J; Zheng Y; Chen X; Fei Z; Gao J
    Plant Physiol; 2013 Oct; 163(2):775-91. PubMed ID: 23933991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa).
    Zheng M; Wang Y; Wang Y; Wang C; Ren Y; Lv J; Peng C; Wu T; Liu K; Zhao S; Liu X; Guo X; Jiang L; Terzaghi W; Wan J
    New Phytol; 2015 Jun; 206(4):1476-90. PubMed ID: 25675970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
    Bemis SM; Lee JS; Shpak ED; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5323-33. PubMed ID: 24006425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana.
    Ishida T; Aida M; Takada S; Tasaka M
    Plant Cell Physiol; 2000 Jan; 41(1):60-7. PubMed ID: 10750709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The AtHB1 Transcription Factor Controls the miR164-CUC2 Regulatory Node to Modulate Leaf Development.
    Miguel VN; Manavella PA; Chan RL; Capella MA
    Plant Cell Physiol; 2020 Mar; 61(3):659-670. PubMed ID: 31868910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response.
    de Silva K; Laska B; Brown C; Sederoff HW; Khodakovskaya M
    J Exp Bot; 2011 May; 62(8):2679-89. PubMed ID: 21252258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Mechanisms of Floral Boundary Formation in Arabidopsis.
    Yu H; Huang T
    Int J Mol Sci; 2016 Mar; 17(3):317. PubMed ID: 26950117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco.
    Baucher M; Moussawi J; Vandeputte OM; Monteyne D; Mol A; PĂ©rez-Morga D; El Jaziri M
    Plant Biol (Stuttg); 2013 Sep; 15(5):892-8. PubMed ID: 23173976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana.
    Chen D; Yan W; Fu LY; Kaufmann K
    Nat Commun; 2018 Oct; 9(1):4534. PubMed ID: 30382087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis.
    Li XG; Su YH; Zhao XY; Li W; Gao XQ; Zhang XS
    Gene; 2010 Jan; 450(1-2):109-20. PubMed ID: 19913077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic interaction between GROWTH-REGULATING FACTOR and CUP-SHAPED COTYLEDON in organ separation.
    Lee BH; Jeon JO; Lee MM; Kim JH
    Plant Signal Behav; 2015; 10(2):e988071. PubMed ID: 25761011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
    Porri A; Torti S; Romera-Branchat M; Coupland G
    Development; 2012 Jun; 139(12):2198-209. PubMed ID: 22573618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis.
    Ito J; Sono T; Tasaka M; Furutani M
    Plant Cell Physiol; 2011 Mar; 52(3):539-52. PubMed ID: 21257604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The salicylic acid receptor NPR3 is a negative regulator of the transcriptional defense response during early flower development in Arabidopsis.
    Shi Z; Maximova S; Liu Y; Verica J; Guiltinan MJ
    Mol Plant; 2013 May; 6(3):802-16. PubMed ID: 22986789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis.
    Larue CT; Wen J; Walker JC
    Plant J; 2009 May; 58(3):450-63. PubMed ID: 19154203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interspecific complementation-restoration of phenotype in Arabidopsis cuc2cuc3 mutant by sugarcane CUC2 gene.
    Aslam M; She Z; Jakada BH; Fakher B; Greaves JG; Yan M; Chen Y; Zheng P; Cheng Y; Qin Y
    BMC Plant Biol; 2022 Jan; 22(1):47. PubMed ID: 35065620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution boundary analysis during Arabidopsis thaliana flower development.
    Breuil-Broyer S; Morel P; de Almeida-Engler J; Coustham V; Negrutiu I; Trehin C
    Plant J; 2004 Apr; 38(1):182-92. PubMed ID: 15053771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.