BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

776 related articles for article (PubMed ID: 22573813)

  • 1. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA.
    Maiti A; Noon MS; MacKerell AD; Pozharski E; Drohat AC
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8091-6. PubMed ID: 22573813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites.
    Maiti A; Drohat AC
    J Biol Chem; 2011 Oct; 286(41):35334-35338. PubMed ID: 21862836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA.
    Malik SS; Coey CT; Varney KM; Pozharski E; Drohat AC
    Nucleic Acids Res; 2015 Oct; 43(19):9541-52. PubMed ID: 26358812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues.
    Coey CT; Malik SS; Pidugu LS; Varney KM; Pozharski E; Drohat AC
    Nucleic Acids Res; 2016 Dec; 44(21):10248-10258. PubMed ID: 27580719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of substrate binding and catalysis on pH, ionic strength, and temperature for thymine DNA glycosylase: Insights into recognition and processing of G·T mispairs.
    Maiti A; Drohat AC
    DNA Repair (Amst); 2011 May; 10(5):545-53. PubMed ID: 21474392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC
    J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase.
    Pidugu LS; Flowers JW; Coey CT; Pozharski E; Greenberg MM; Drohat AC
    Biochemistry; 2016 Nov; 55(45):6205-6208. PubMed ID: 27805810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometry and affinity for thymine DNA glycosylase binding to specific and nonspecific DNA.
    Morgan MT; Maiti A; Fitzgerald ME; Drohat AC
    Nucleic Acids Res; 2011 Mar; 39(6):2319-29. PubMed ID: 21097883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of glycosylase activity on oxidative derivatives of methylcytosine: Pedobacter heparinus SMUG2 as a formylcytosine- and carboxylcytosine-DNA glycosylase.
    Chang C; Yang Y; Li J; Park SH; Fang GC; Liang C; Cao W
    DNA Repair (Amst); 2022 Nov; 119():103408. PubMed ID: 36179537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA.
    Manvilla BA; Maiti A; Begley MC; Toth EA; Drohat AC
    J Mol Biol; 2012 Jul; 420(3):164-75. PubMed ID: 22560993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation.
    Hashimoto H; Hong S; Bhagwat AS; Zhang X; Cheng X
    Nucleic Acids Res; 2012 Nov; 40(20):10203-14. PubMed ID: 22962365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thymine-DNA glycosylase regulatory domain: residual structure and DNA binding.
    Smet-Nocca C; Wieruszeski JM; Chaar V; Leroy A; Benecke A
    Biochemistry; 2008 Jun; 47(25):6519-30. PubMed ID: 18512959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites.
    Bellacosa A; Drohat AC
    DNA Repair (Amst); 2015 Aug; 32():33-42. PubMed ID: 26021671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid excision of oxidized adenine by human thymine DNA glycosylase.
    Servius HW; Pidugu LS; Sherman ME; Drohat AC
    J Biol Chem; 2023 Jan; 299(1):102756. PubMed ID: 36460098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase.
    Gallinari P; Jiricny J
    Nature; 1996 Oct; 383(6602):735-8. PubMed ID: 8878487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TET-TDG Active DNA Demethylation at CpG and Non-CpG Sites.
    DeNizio JE; Dow BJ; Serrano JC; Ghanty U; Drohat AC; Kohli RM
    J Mol Biol; 2021 Apr; 433(8):166877. PubMed ID: 33561435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uracil in DNA--occurrence, consequences and repair.
    Krokan HE; Drabløs F; Slupphaug G
    Oncogene; 2002 Dec; 21(58):8935-48. PubMed ID: 12483510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA.
    Moréra S; Grin I; Vigouroux A; Couvé S; Henriot V; Saparbaev M; Ishchenko AA
    Nucleic Acids Res; 2012 Oct; 40(19):9917-26. PubMed ID: 22848106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase.
    Coey CT; Drohat AC
    Nucleic Acids Res; 2018 Jun; 46(10):5159-5170. PubMed ID: 29660017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
    Ito S; Kuraoka I
    DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.