These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 22573814)

  • 41. Identification of Distinct Conformations of the Angiotensin-II Type 1 Receptor Associated with the Gq/11 Protein Pathway and the β-Arrestin Pathway Using Molecular Dynamics Simulations.
    Cabana J; Holleran B; Leduc R; Escher E; Guillemette G; Lavigne P
    J Biol Chem; 2015 Jun; 290(25):15835-15854. PubMed ID: 25934394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors.
    Ikeda Y; Kumagai H; Okazaki H; Fujishiro M; Motozawa Y; Nomura S; Takeda N; Toko H; Takimoto E; Akazawa H; Morita H; Suzuki J; Yamazaki T; Komuro I; Yanagisawa M
    PLoS One; 2015; 10(6):e0127445. PubMed ID: 26030739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles.
    Logez C; Damian M; Legros C; Dupré C; Guéry M; Mary S; Wagner R; M'Kadmi C; Nosjean O; Fould B; Marie J; Fehrentz JA; Martinez J; Ferry G; Boutin JA; Banères JL
    Biochemistry; 2016 Jan; 55(1):38-48. PubMed ID: 26701065
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling.
    Latorraca NR; Masureel M; Hollingsworth SA; Heydenreich FM; Suomivuori CM; Brinton C; Townshend RJL; Bouvier M; Kobilka BK; Dror RO
    Cell; 2020 Dec; 183(7):1813-1825.e18. PubMed ID: 33296703
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Refining efficacy: exploiting functional selectivity for drug discovery.
    Gesty-Palmer D; Luttrell LM
    Adv Pharmacol; 2011; 62():79-107. PubMed ID: 21907907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity.
    Sanchez-Soto M; Verma RK; Willette BKA; Gonye EC; Moore AM; Moritz AE; Boateng CA; Yano H; Free RB; Shi L; Sibley DR
    Sci Signal; 2020 Feb; 13(617):. PubMed ID: 32019899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural mechanism of GPCR-arrestin interaction: recent breakthroughs.
    Park JY; Lee SY; Kim HR; Seo MD; Chung KY
    Arch Pharm Res; 2016 Mar; 39(3):293-301. PubMed ID: 26825061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation.
    Coffa S; Breitman M; Hanson SM; Callaway K; Kook S; Dalby KN; Gurevich VV
    PLoS One; 2011; 6(12):e28723. PubMed ID: 22174878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of conformational ensembles of seven transmembrane receptors in functional selectivity.
    Vaidehi N; Kenakin T
    Curr Opin Pharmacol; 2010 Dec; 10(6):775-81. PubMed ID: 20933468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.
    Ye L; Van Eps N; Zimmer M; Ernst OP; Prosser RS
    Nature; 2016 May; 533(7602):265-8. PubMed ID: 27144352
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop.
    Mokrosiński J; Frimurer TM; Sivertsen B; Schwartz TW; Holst B
    J Biol Chem; 2012 Sep; 287(40):33488-502. PubMed ID: 22846991
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of structural dynamics in GPCR-mediated signaling.
    Hilger D
    FEBS J; 2021 Apr; 288(8):2461-2489. PubMed ID: 33871923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction.
    Guillien M; Mouhand A; Fournet A; Gontier A; Martí Navia A; Cordeiro TN; Allemand F; Thureau A; Banères JL; Bernadó P; Sibille N
    Biomolecules; 2022 Apr; 12(5):. PubMed ID: 35625550
    [TBL] [Abstract][Full Text] [Related]  

  • 54. β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1.
    Mancini AD; Bertrand G; Vivot K; Carpentier É; Tremblay C; Ghislain J; Bouvier M; Poitout V
    J Biol Chem; 2015 Aug; 290(34):21131-21140. PubMed ID: 26157145
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biasing the parathyroid hormone receptor: relating in vitro ligand efficacy to in vivo biological activity.
    Appleton KM; Lee MH; Alele C; Alele C; Luttrell DK; Peterson YK; Morinelli TA; Luttrell LM
    Methods Enzymol; 2013; 522():229-62. PubMed ID: 23374189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arrestin-Dependent and -Independent Internalization of G Protein-Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling.
    Moo EV; van Senten JR; Bräuner-Osborne H; Møller TC
    Mol Pharmacol; 2021 Apr; 99(4):242-255. PubMed ID: 33472843
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors.
    Azzi M; Charest PG; Angers S; Rousseau G; Kohout T; Bouvier M; Piñeyro G
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11406-11. PubMed ID: 13679574
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identifying multiple active conformations in the G protein-coupled receptor activation landscape using computational methods.
    Dong SS; Goddard WA; Abrol R
    Methods Cell Biol; 2017; 142():173-186. PubMed ID: 28964335
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel luminescence-based β-arrestin recruitment assay for unmodified receptors.
    Hauge Pedersen M; Pham J; Mancebo H; Inoue A; Asher WB; Javitch JA
    J Biol Chem; 2021; 296():100503. PubMed ID: 33684444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.