BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22574133)

  • 1. Assessing gear modifications needed to optimize yields in a heavily exploited, multi-species, seagrass and coral reef fishery.
    Hicks CC; McClanahan TR
    PLoS One; 2012; 7(5):e36022. PubMed ID: 22574133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the environmental impacts of artisanal fishing gear on Kenya's coral reef ecosystems.
    Mangi SC; Roberts CM
    Mar Pollut Bull; 2006 Dec; 52(12):1646-60. PubMed ID: 16904703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fisheries closures and gear restrictions on fishing income in a Kenyan coral reef.
    McClanahan TR
    Conserv Biol; 2010 Dec; 24(6):1519-28. PubMed ID: 20497202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malthusian overfishing and efforts to overcome it on Kenyan coral reefs.
    McClanahan TR; Hicks CC; Darling ES
    Ecol Appl; 2008 Sep; 18(6):1516-29. PubMed ID: 18767626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redistribution of benefits but not detection in a fisheries bycatch-reduction management initiative.
    McClanahan TR; Kosgei JK
    Conserv Biol; 2018 Feb; 32(1):159-170. PubMed ID: 28678422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependency of Queensland and the Great Barrier Reef's tropical fisheries on reef-associated fish.
    Brown CJ; Taylor W; Wabnitz CCC; Connolly RM
    Sci Rep; 2020 Oct; 10(1):17801. PubMed ID: 33082460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and indirect effects of heatwaves on a coral reef fishery.
    Brown CJ; Mellin C; Edgar GJ; Campbell MD; Stuart-Smith RD
    Glob Chang Biol; 2021 Mar; 27(6):1214-1225. PubMed ID: 33340216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas.
    Campbell SJ; Edgar GJ; Stuart-Smith RD; Soler G; Bates AE
    Conserv Biol; 2018 Apr; 32(2):401-410. PubMed ID: 28776761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human and environmental gradients predict catch, effort, and species composition in a large Micronesian coral-reef fishery.
    Cuetos-Bueno J; Hernandez-Ortiz D; Graham C; Houk P
    PLoS One; 2018; 13(5):e0198068. PubMed ID: 29852023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass-based targets and the management of multispecies coral reef fisheries.
    McClanahan TR; Graham NA; MacNeil MA; Cinner JE
    Conserv Biol; 2015 Apr; 29(2):409-17. PubMed ID: 25494592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Effects of Marine Reserves and Harvest Controls on the Abundance and Catch Dynamics of a Coral Reef Fishery.
    Hopf JK; Jones GP; Williamson DH; Connolly SR
    Curr Biol; 2016 Jun; 26(12):1543-1548. PubMed ID: 27185553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes.
    Kimirei IA; Nagelkerken I; Mgaya YD; Huijbers CM
    PLoS One; 2013; 8(6):e66320. PubMed ID: 23776658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures.
    Starr RM; Gleason MG; Marks CI; Kline D; Rienecke S; Denney C; Tagini A; Field JC
    PLoS One; 2016; 11(12):e0168645. PubMed ID: 28002499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Community- and government-managed marine protected areas increase fish size, biomass and potential value.
    Chirico AAD; McClanahan TR; Eklöf JS
    PLoS One; 2017; 12(8):e0182342. PubMed ID: 28806740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of habitat-based conservation plans by fishery opportunity costs: a New Caledonia case study using fine-scale catch data.
    Deas M; Andréfouët S; Léopold M; Guillemot N
    PLoS One; 2014; 9(5):e97409. PubMed ID: 24835216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The commercially important shoemaker spinefoot, Siganus sutor, connects coral reefs to neighbouring seagrass meadows.
    Ebrahim A; Bijoux JP; Mumby PJ; Tibbetts IR
    J Fish Biol; 2020 Apr; 96(4):1034-1044. PubMed ID: 32077095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems.
    Graham NA; Wilson SK; Jennings S; Polunin NV; Robinson J; Bijoux JP; Daw TM
    Conserv Biol; 2007 Oct; 21(5):1291-300. PubMed ID: 17883494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of a small-scale fishery: Lane Snapper (Lutjanus synagris) using a length metric method.
    Sierra Castillo L; Fujiwara M
    PLoS One; 2021; 16(2):e0233479. PubMed ID: 33524063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery potential of the world's coral reef fishes.
    MacNeil MA; Graham NA; Cinner JE; Wilson SK; Williams ID; Maina J; Newman S; Friedlander AM; Jupiter S; Polunin NV; McClanahan TR
    Nature; 2015 Apr; 520(7547):341-4. PubMed ID: 25855298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating nearshore coral reef-associated fisheries production from the main Hawaiian Islands.
    McCoy KS; Williams ID; Friedlander AM; Ma H; Teneva L; Kittinger JN
    PLoS One; 2018; 13(4):e0195840. PubMed ID: 29659616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.