These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22574136)

  • 1. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.
    Niemiec MS; Weise CF; Wittung-Stafshede P
    PLoS One; 2012; 7(5):e36102. PubMed ID: 22574136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational dynamics of metal-binding domains in Wilson disease protein: molecular insights into selective copper transfer.
    Rodriguez-Granillo A; Crespo A; Wittung-Stafshede P
    Biochemistry; 2009 Jun; 48(25):5849-63. PubMed ID: 19449859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein.
    Rodriguez-Granillo A; Crespo A; Estrin DA; Wittung-Stafshede P
    J Phys Chem B; 2010 Mar; 114(10):3698-706. PubMed ID: 20166696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of copper(I) by the Wilson disease protein and its copper chaperone.
    Wernimont AK; Yatsunyk LA; Rosenzweig AC
    J Biol Chem; 2004 Mar; 279(13):12269-76. PubMed ID: 14709553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved residues modulate copper release in human copper chaperone Atox1.
    Hussain F; Olson JS; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11158-63. PubMed ID: 18685091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N-terminal metal-binding site 2 of the Wilson's Disease Protein plays a key role in the transfer of copper from Atox1.
    Walker JM; Huster D; Ralle M; Morgan CT; Blackburn NJ; Lutsenko S
    J Biol Chem; 2004 Apr; 279(15):15376-84. PubMed ID: 14754885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of the interaction of the copper chaperone Atox1 with the metal binding sites of the Menkes protein.
    Strausak D; Howie MK; Firth SD; Schlicksupp A; Pipkorn R; Multhaup G; Mercer JF
    J Biol Chem; 2003 Jun; 278(23):20821-7. PubMed ID: 12679332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper transfer to the N-terminal domain of the Wilson disease protein (ATP7B): X-ray absorption spectroscopy of reconstituted and chaperone-loaded metal binding domains and their interaction with exogenous ligands.
    Ralle M; Lutsenko S; Blackburn NJ
    J Inorg Biochem; 2004 May; 98(5):765-74. PubMed ID: 15134922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu(I) binding and transfer by the N terminus of the Wilson disease protein.
    Yatsunyk LA; Rosenzweig AC
    J Biol Chem; 2007 Mar; 282(12):8622-31. PubMed ID: 17229731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1.
    Banci L; Bertini I; Cantini F; Rosenzweig AC; Yatsunyk LA
    Biochemistry; 2008 Jul; 47(28):7423-9. PubMed ID: 18558714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake.
    Achila D; Banci L; Bertini I; Bunce J; Ciofi-Baffoni S; Huffman DL
    Proc Natl Acad Sci U S A; 2006 Apr; 103(15):5729-34. PubMed ID: 16571664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro.
    Palm ME; Weise CF; Lundin C; Wingsle G; Nygren Y; Björn E; Naredi P; Wolf-Watz M; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6951-6. PubMed ID: 21482801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity.
    Walker JM; Tsivkovskii R; Lutsenko S
    J Biol Chem; 2002 Aug; 277(31):27953-9. PubMed ID: 12029094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper(I)-mediated protein-protein interactions result from suboptimal interaction surfaces.
    Banci L; Bertini I; Calderone V; Della-Malva N; Felli IC; Neri S; Pavelkova A; Rosato A
    Biochem J; 2009 Jul; 422(1):37-42. PubMed ID: 19453293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine-60 in copper chaperone Atox1 plays an essential role in adduct formation with a target Wilson disease domain.
    Hussain F; Rodriguez-Granillo A; Wittung-Stafshede P
    J Am Chem Soc; 2009 Nov; 131(45):16371-3. PubMed ID: 19863064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics and stability of the metal binding domains of the Menkes ATPase and their interaction with metallochaperone HAH1.
    Arumugam K; Crouzy S
    Biochemistry; 2012 Nov; 51(44):8885-906. PubMed ID: 23075277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enthalpy-entropy compensation at play in human copper ion transfer.
    Niemiec MS; Dingeldein AP; Wittung-Stafshede P
    Sci Rep; 2015 May; 5():10518. PubMed ID: 26013029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR characterization of copper-binding domains 4-6 of ATP7B .
    Fatemi N; Korzhnev DM; Velyvis A; Sarkar B; Forman-Kay JD
    Biochemistry; 2010 Oct; 49(39):8468-77. PubMed ID: 20799727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional properties of the human copper-transporting ATPase ATP7B (the Wilson's disease protein) and regulation by metallochaperone Atox1.
    Lutsenko S; Tsivkovskii R; Walker JM
    Ann N Y Acad Sci; 2003 Apr; 986():204-11. PubMed ID: 12763797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An expanding range of functions for the copper chaperone/antioxidant protein Atox1.
    Hatori Y; Lutsenko S
    Antioxid Redox Signal; 2013 Sep; 19(9):945-57. PubMed ID: 23249252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.