BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22574258)

  • 1. Fast calculation of multipath diffusive reflectance in optical coherence tomography.
    Lima IT; Kalra A; Hernández-Figueroa HE; Sherif SS
    Biomed Opt Express; 2012 Apr; 3(4):692-700. PubMed ID: 22574258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography.
    Lima IT; Kalra A; Sherif SS
    Biomed Opt Express; 2011 Apr; 2(5):1069-81. PubMed ID: 21559120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of optical coherence tomography for turbid media with arbitrary spatial distributions.
    Malektaji S; Lima IT; Sherif SS
    J Biomed Opt; 2014 Apr; 19(4):046001. PubMed ID: 24695845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of improved depth penetration in dual-axis optical coherence tomography: a Monte Carlo study.
    Zhao Y; Chu KK; Jelly ET; Wax A
    J Biophotonics; 2019 Jun; 12(6):e201800383. PubMed ID: 30701684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation.
    Smithies DJ; Lindmo T; Chen Z; Nelson JS; Milner TE
    Phys Med Biol; 1998 Oct; 43(10):3025-44. PubMed ID: 9814533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Monte Carlo simulation of frequency-domain optical coherence tomography.
    Wang Y; Bai L
    Int J Numer Method Biomed Eng; 2019 Apr; 35(4):e3177. PubMed ID: 30690893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance sampling-based Monte Carlo simulation of time-domain optical coherence tomography with embedded objects.
    Periyasamy V; Pramanik M
    Appl Opt; 2016 Apr; 55(11):2921-9. PubMed ID: 27139855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach.
    Kirillin M; Meglinski I; Kuzmin V; Sergeeva E; Myllylä R
    Opt Express; 2010 Oct; 18(21):21714-24. PubMed ID: 20941071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple scattering effects in Doppler optical coherence tomography of flowing blood.
    Kalkman J; Bykov AV; Streekstra GJ; van Leeuwen TG
    Phys Med Biol; 2012 Apr; 57(7):1907-17. PubMed ID: 22421380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penetration depth of low-coherence enhanced backscattered light in subdiffusion regime.
    Subramanian H; Pradhan P; Kim YL; Backman V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041914. PubMed ID: 17500928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo modeling of angiographic optical coherence tomography.
    Hartinger AE; Nam AS; Chico-Calero I; Vakoc BJ
    Biomed Opt Express; 2014 Dec; 5(12):4338-49. PubMed ID: 25574442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbation Monte Carlo Method for Quantitative Photoacoustic Tomography.
    Leino AA; Lunttila T; Mozumder M; Pulkkinen A; Tarvainen T
    IEEE Trans Med Imaging; 2020 Oct; 39(10):2985-2995. PubMed ID: 32217473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced modelling of optical coherence tomography systems.
    Andersen PE; Thrane L; Yura HT; Tycho A; Jørgensen TM; Frosz MH
    Phys Med Biol; 2004 Apr; 49(7):1307-27. PubMed ID: 15128207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two electric field Monte Carlo models of coherent backscattering of polarized light.
    Doronin A; Radosevich AJ; Backman V; Meglinski I
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2394-400. PubMed ID: 25401350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo-based full-wavelength simulator of Fourier-domain optical coherence tomography.
    Mao J; Ling Y; Xue P; Su Y
    Biomed Opt Express; 2022 Dec; 13(12):6317-6334. PubMed ID: 36589559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method.
    Meglinski I; Kirillin M; Kuzmin V; Myllylä R
    Opt Lett; 2008 Jul; 33(14):1581-3. PubMed ID: 18628804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart optical coherence tomography for ultra-deep imaging through highly scattering media.
    Badon A; Li D; Lerosey G; Boccara AC; Fink M; Aubry A
    Sci Adv; 2016 Nov; 2(11):e1600370. PubMed ID: 27847864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.