These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 22574766)
61. An analysis of molecular packing and chemical association in liquid water using quasichemical theory. Paliwal A; Asthagiri D; Pratt LR; Ashbaugh HS; Paulaitis ME J Chem Phys; 2006 Jun; 124(22):224502. PubMed ID: 16784293 [TBL] [Abstract][Full Text] [Related]
62. On the molecular origins of volumetric data. Chalikian TV J Phys Chem B; 2008 Jan; 112(3):911-7. PubMed ID: 18171052 [TBL] [Abstract][Full Text] [Related]
63. Optimizing solute-water van der Waals interactions to reproduce solvation free energies. Nerenberg PS; Jo B; So C; Tripathy A; Head-Gordon T J Phys Chem B; 2012 Apr; 116(15):4524-34. PubMed ID: 22443635 [TBL] [Abstract][Full Text] [Related]
64. Assessing accumulated solvent near a macromolecular solute by preferential interaction coefficients. Tang KE; Bloomfield VA Biophys J; 2002 Jun; 82(6):2876-91. PubMed ID: 12023211 [TBL] [Abstract][Full Text] [Related]
65. Cononsolvency behavior of hydrophobes in water + methanol mixtures. Mochizuki K; Koga K Phys Chem Chem Phys; 2016 Jun; 18(24):16188-95. PubMed ID: 27251342 [TBL] [Abstract][Full Text] [Related]
66. Spatial and Orientational Structure of the Hydration Shell of Benzene in Sub- and Supercritical Water. Choudhary A; Chandra A J Phys Chem B; 2015 Jul; 119(27):8600-12. PubMed ID: 26109169 [TBL] [Abstract][Full Text] [Related]
67. An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution. Fraternali F; Van Gunsteren WF J Mol Biol; 1996 Mar; 256(5):939-48. PubMed ID: 8601844 [TBL] [Abstract][Full Text] [Related]
68. The influence of trehalose on hydrophobic interactions of small nonpolar solute: A molecular dynamics simulation study. Paul S; Paul S J Chem Phys; 2013 Jul; 139(4):044508. PubMed ID: 23901994 [TBL] [Abstract][Full Text] [Related]
69. Local composition in the vicinity of a protein molecule in an aqueous mixed solvent. Shulgin IL; Ruckenstein E J Phys Chem B; 2007 Apr; 111(15):3990-8. PubMed ID: 17388621 [TBL] [Abstract][Full Text] [Related]
70. Effects of cosolvents on the hydration of carbon nanotubes. Yang L; Gao YQ J Am Chem Soc; 2010 Jan; 132(2):842-8. PubMed ID: 20030390 [TBL] [Abstract][Full Text] [Related]
71. Free-energy analysis of the hydration and cosolvent effects on the β-sheet aggregation through all-atom molecular dynamics simulation. Masutani K; Yamamori Y; Kim K; Matubayasi N J Chem Phys; 2019 Apr; 150(14):145101. PubMed ID: 30981229 [TBL] [Abstract][Full Text] [Related]
72. How do glycerol and dimethyl sulphoxide affect local tetrahedral structure of water around a nonpolar solute at low temperature? Importance of preferential interaction. Daschakraborty S J Chem Phys; 2018 Apr; 148(13):134501. PubMed ID: 29626866 [TBL] [Abstract][Full Text] [Related]
73. Non-van der Waals treatment of the hydrophobic solubilities of CF4. Asthagiri D; Ashbaugh HS; Piryatinski A; Paulaitis ME; Pratt LR J Am Chem Soc; 2007 Aug; 129(33):10133-40. PubMed ID: 17661465 [TBL] [Abstract][Full Text] [Related]
74. Solvent sensitivity of protein unfolding: dynamical study of chicken villin headpiece subdomain in water-ethanol binary mixture. Ghosh R; Roy S; Bagchi B J Phys Chem B; 2013 Dec; 117(49):15625-38. PubMed ID: 24168520 [TBL] [Abstract][Full Text] [Related]
75. Cosolvent Effects on Solute-Solvent Hydrogen-Bond Dynamics: Ultrafast 2D IR Investigations. Kashid SM; Jin GY; Bagchi S; Kim YS J Phys Chem B; 2015 Dec; 119(49):15334-43. PubMed ID: 26558297 [TBL] [Abstract][Full Text] [Related]
76. Free energy profiles for penetration of methane and water molecules into spherical sodium dodecyl sulfate micelles obtained using the thermodynamic integration method combined with molecular dynamics calculations. Fujimoto K; Yoshii N; Okazaki S J Chem Phys; 2012 Jan; 136(1):014511. PubMed ID: 22239793 [TBL] [Abstract][Full Text] [Related]
77. New approach to free energy of solvation applying continuum models to molecular dynamics simulation. Gonçalves PF; Stassen H J Comput Chem; 2002 May; 23(7):706-14. PubMed ID: 11948588 [TBL] [Abstract][Full Text] [Related]
78. A nucleation-based method to study hydrophobic interactions under confinement: enhanced hydrophobic association driven by energetic contributions. Kim H; Keasler SJ; Chen B J Phys Chem B; 2014 Jun; 118(24):6875-84. PubMed ID: 24853272 [TBL] [Abstract][Full Text] [Related]
79. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration. Irudayam SJ; Henchman RH J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280 [TBL] [Abstract][Full Text] [Related]
80. Application of the local-bulk partitioning and competitive binding models to interpret preferential interactions of glycine betaine and urea with protein surface. Felitsky DJ; Record MT Biochemistry; 2004 Jul; 43(28):9276-88. PubMed ID: 15248785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]