BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 22574817)

  • 1. Initiation of the reaction of deamidation in triosephosphate isomerase: investigations by means of molecular dynamics simulations.
    Ugur I; Aviyente V; Monard G
    J Phys Chem B; 2012 Jun; 116(22):6288-301. PubMed ID: 22574817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why does Asn71 deamidate faster than Asn15 in the enzyme triosephosphate isomerase? Answers from microsecond molecular dynamics simulation and QM/MM free energy calculations.
    Ugur I; Marion A; Aviyente V; Monard G
    Biochemistry; 2015 Feb; 54(6):1429-39. PubMed ID: 25602614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of active-site modification on the terminal marking deamidation of triosephosphate isomerase.
    Talent JM; Zvaigzne AI; Agrawal N; Gracy RW
    Arch Biochem Biophys; 1997 Apr; 340(1):27-35. PubMed ID: 9126273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terminal marking of triosephosphate isomerase: consequences of deamidation.
    Sun AQ; Yüksel KU; Gracy RW
    Arch Biochem Biophys; 1995 Oct; 322(2):361-8. PubMed ID: 7574709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terminal marking of avian triosephosphate isomerases by deamidation and oxidation.
    Zhang Y; Yüksel KU; Gracy RW
    Arch Biochem Biophys; 1995 Feb; 317(1):112-20. PubMed ID: 7872772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of structural fluctuations to deamidation reaction in triosephosphate isomerase by Gaussian network model.
    Konuklar FA; Aviyente V; Haliloğlu T
    Proteins; 2006 Mar; 62(3):715-27. PubMed ID: 16323206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the catalytic center and the primary degradation site of triosephosphate isomerase: effects of active site modification and deamidation.
    Sun AQ; Yüksel KU; Gracy RW
    Arch Biochem Biophys; 1992 Mar; 293(2):382-90. PubMed ID: 1536574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deamidation of triosephosphate isomerase in reverse micelles: effects of water on catalysis and molecular wear and tear.
    Garza-Ramos G; Tuena de Gomez-Puyou M; Gomez-Puyou A; Yüksel KU; Gracy RW
    Biochemistry; 1994 Jun; 33(22):6960-5. PubMed ID: 8204630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction mechanism of deamidation of asparaginyl residues in peptides: effect of solvent molecules.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2006 Jul; 110(27):8354-65. PubMed ID: 16821819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoforms of chicken triosephosphate isomerase are due to specific oxidation of cysteine126.
    Tang CY; Yüksel KU; Jacobson TM; Gracy RW
    Arch Biochem Biophys; 1990 Nov; 283(1):12-9. PubMed ID: 2241163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lysine residues on the deamidation reaction of asparagine side chains.
    Capasso S; Balboni G; Di Cerbo P
    Biopolymers; 2000 Feb; 53(2):213-9. PubMed ID: 10679625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural effects of protein aging: terminal marking by deamidation in human triosephosphate isomerase.
    de la Mora-de la Mora I; Torres-Larios A; Enríquez-Flores S; Méndez ST; Castillo-Villanueva A; Gómez-Manzo S; López-Velázquez G; Marcial-Quino J; Torres-Arroyo A; García-Torres I; Reyes-Vivas H; Oria-Hernández J
    PLoS One; 2015; 10(4):e0123379. PubMed ID: 25884638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmission coefficient calculation for proton transfer in triosephosphate isomerase based on the reaction path potential method.
    Wang M; Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):101-7. PubMed ID: 15260526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the mechanism of the triosephosphate isomerase reaction: the role of the fully conserved glutamic acid 97 residue.
    Samanta M; Murthy MR; Balaram H; Balaram P
    Chembiochem; 2011 Aug; 12(12):1886-96. PubMed ID: 21671330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refolding of triosephosphate isomerase in low-water media investigated by fluorescence resonance energy transfer.
    Sepúlveda-Becerra MA; Ferreira ST; Strasser RJ; Garzón-Rodríguez W; Beltrán C; Gómez-Puyou A; Darszon A
    Biochemistry; 1996 Dec; 35(49):15915-22. PubMed ID: 8961958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution NMR and computer simulation studies of active site loop motion in triosephosphate isomerase.
    Massi F; Wang C; Palmer AG
    Biochemistry; 2006 Sep; 45(36):10787-94. PubMed ID: 16953564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes.
    Noble ME; Wierenga RK; Lambeir AM; Opperdoes FR; Thunnissen AM; Kalk KH; Groendijk H; Hol WG
    Proteins; 1991; 10(1):50-69. PubMed ID: 2062828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro deamidation of human triosephosphate isomerase.
    Yüksel KU; Gracy RW
    Arch Biochem Biophys; 1986 Aug; 248(2):452-9. PubMed ID: 3740839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.