These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 22574891)
1. Kinetics of Cu(II) reduction by natural organic matter. Pham AN; Rose AL; Waite TD J Phys Chem A; 2012 Jun; 116(25):6590-9. PubMed ID: 22574891 [TBL] [Abstract][Full Text] [Related]
2. Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter. Bligh MW; Waite TD Environ Sci Technol; 2010 Sep; 44(17):6667-73. PubMed ID: 20690668 [TBL] [Abstract][Full Text] [Related]
3. Effect of Chloride and Suwannee River Fulvic Acid on Cu Speciation: Implications to Cu Redox Transformations in Simulated Natural Waters. Xing G; Garg S; Miller CJ; Pham AN; Waite TD Environ Sci Technol; 2020 Feb; 54(4):2334-2343. PubMed ID: 31999104 [TBL] [Abstract][Full Text] [Related]
4. In situ study of binding of copper by fulvic acid: comparison of differential absorbance data and model predictions. Yan M; Dryer D; Korshin GV; Benedetti MF Water Res; 2013 Feb; 47(2):588-96. PubMed ID: 23174533 [TBL] [Abstract][Full Text] [Related]
5. Mechanism and kinetics of dark iron redox transformations in previously photolyzed acidic natural organic matter solutions. Garg S; Ito H; Rose AL; Waite TD Environ Sci Technol; 2013 Feb; 47(4):1861-9. PubMed ID: 23331166 [TBL] [Abstract][Full Text] [Related]
6. Iron redox transformations in continuously photolyzed acidic solutions containing natural organic matter: kinetic and mechanistic insights. Garg S; Jiang C; Miller CJ; Rose AL; Waite TD Environ Sci Technol; 2013 Aug; 47(16):9190-7. PubMed ID: 23879362 [TBL] [Abstract][Full Text] [Related]
7. A fluorescence quenching study of the interaction of Suwannee River fulvic acid with iron oxide nanoparticles. Manciulea A; Baker A; Lead JR Chemosphere; 2009 Aug; 76(8):1023-7. PubMed ID: 19477482 [TBL] [Abstract][Full Text] [Related]
8. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319 [TBL] [Abstract][Full Text] [Related]
9. Effects of pH, chloride, and bicarbonate on Cu(I) oxidation kinetics at circumneutral pH. Yuan X; Pham AN; Xing G; Rose AL; Waite TD Environ Sci Technol; 2012 Feb; 46(3):1527-35. PubMed ID: 22185182 [TBL] [Abstract][Full Text] [Related]
10. Impact of Natural Organic Matter on H2O2-Mediated Oxidation of Fe(II) in Coastal Seawaters. Miller CJ; Vincent Lee SM; Rose AL; Waite TD Environ Sci Technol; 2012 Oct; 46(20):11078-85. PubMed ID: 22985332 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence characterization of the interaction Suwannee river fulvic acid with the herbicide dichlorprop (2-(2,4-dichlorophenoxy)propionic acid) in the absence and presence of aluminum or erbium. Elkins KM; Dickerson MA; Traudt EM J Inorg Biochem; 2011 Nov; 105(11):1469-76. PubMed ID: 21983257 [TBL] [Abstract][Full Text] [Related]
12. Contribution of fulvic acid to the photochemical formation of Fe(II) in acidic Suwannee River fulvic acid solutions. Arakaki T; Saito K; Okada K; Nakajima H; Hitomi Y Chemosphere; 2010 Feb; 78(8):1023-7. PubMed ID: 20056515 [TBL] [Abstract][Full Text] [Related]
13. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions. Jiang C; Garg S; Waite TD Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728 [TBL] [Abstract][Full Text] [Related]
14. Effect of natural organic matter on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa. Fujii M; Dang TC; Bligh MW; Rose AL; Waite TD Environ Sci Technol; 2014; 48(1):365-74. PubMed ID: 24261844 [TBL] [Abstract][Full Text] [Related]
15. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations. Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113 [TBL] [Abstract][Full Text] [Related]
16. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles. Zhang W; Rattanaudompol US; Li H; Bouchard D Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256 [TBL] [Abstract][Full Text] [Related]
17. [Photodegradation of bisphenol A in presence of Suwannee River fulvic acid]. Yang HS; Yang X; Zhan MJ; Zhang AQ Huan Jing Ke Xue; 2005 Jul; 26(4):40-4. PubMed ID: 16212165 [TBL] [Abstract][Full Text] [Related]
18. Photo-oxidation of arsenite in acidic waters containing Suwannee River fulvic acid: roles of Wang Y; Gong X; Dong X Environ Sci Pollut Res Int; 2021 Sep; 28(33):45144-45154. PubMed ID: 33864218 [TBL] [Abstract][Full Text] [Related]
19. Oxidation of Cu(I) in seawater at low oxygen concentrations. Pérez-Almeida N; González-Dávila M; Santana-Casiano JM; González AG; Suárez de Tangil M Environ Sci Technol; 2013 Feb; 47(3):1239-47. PubMed ID: 23259733 [TBL] [Abstract][Full Text] [Related]
20. Alternating current anodic stripping voltammetry in the study of cadmium complexation by a reference Suwannee river fulvic acid: a model case with strong electrode adsorption and weak binding. Garrigosa AM; Ariño C; Díaz-Cruz JM; Esteban M Anal Bioanal Chem; 2008 Jan; 390(2):769-76. PubMed ID: 18026862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]