These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
726 related articles for article (PubMed ID: 22574906)
1. 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. Dong X; Wang X; Wang L; Song H; Zhang H; Huang W; Chen P ACS Appl Mater Interfaces; 2012 Jun; 4(6):3129-33. PubMed ID: 22574906 [TBL] [Abstract][Full Text] [Related]
2. The effects of ionic liquid on the electrochemical sensing performance of graphene- and carbon nanotube-based electrodes. Wang CH; Wu CH; Wu JW; Lee MT; Chang JK; Ger MD; Sun CL Analyst; 2013 Jan; 138(2):576-82. PubMed ID: 23172364 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous electrochemical sensing of ascorbic acid, dopamine and uric acid at anodized nanocrystalline graphite-like pyrolytic carbon film electrode. Hadi M; Rouhollahi A Anal Chim Acta; 2012 Apr; 721():55-60. PubMed ID: 22405300 [TBL] [Abstract][Full Text] [Related]
4. A three-dimensional interpenetrating electrode of reduced graphene oxide for selective detection of dopamine. Yu X; Sheng K; Shi G Analyst; 2014 Sep; 139(18):4525-31. PubMed ID: 25045758 [TBL] [Abstract][Full Text] [Related]
5. Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Mallesha M; Manjunatha R; Nethravathi C; Suresh GS; Rajamathi M; Melo JS; Venkatesha TV Bioelectrochemistry; 2011 Jun; 81(2):104-8. PubMed ID: 21497563 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Feng X; Zhang Y; Zhou J; Li Y; Chen S; Zhang L; Ma Y; Wang L; Yan X Nanoscale; 2015 Feb; 7(6):2427-32. PubMed ID: 25565111 [TBL] [Abstract][Full Text] [Related]
7. Highly sensitive and selective uric acid biosensor based on a three-dimensional graphene foam/indium tin oxide glass electrode. Yue HY; Zhang H; Chang J; Gao X; Huang S; Yao LH; Lin XY; Guo EJ Anal Biochem; 2015 Nov; 488():22-7. PubMed ID: 26254685 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films. Weng X; Cao Q; Liang L; Chen J; You C; Ruan Y; Lin H; Wu L Talanta; 2013 Dec; 117():359-65. PubMed ID: 24209353 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
10. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Sun CL; Lee HH; Yang JM; Wu CC Biosens Bioelectron; 2011 Apr; 26(8):3450-5. PubMed ID: 21324669 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Wang L; Zhang Q; Chen S; Xu F; Chen S; Jia J; Tan H; Hou H; Song Y Anal Chem; 2014 Feb; 86(3):1414-21. PubMed ID: 24422469 [TBL] [Abstract][Full Text] [Related]
12. CVD graphene electrochemistry: biologically relevant molecules. Brownson DA; Gómez-Mingot M; Banks CE Phys Chem Chem Phys; 2011 Dec; 13(45):20284-8. PubMed ID: 21989626 [TBL] [Abstract][Full Text] [Related]
13. Highly sensitive and selective dopamine biosensor using Au nanoparticles-ZnO nanocone arrays/graphene foam electrode. Yue HY; Zhang HJ; Huang S; Lu XX; Gao X; Song SS; Wang Z; Wang WQ; Guan EH Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110490. PubMed ID: 31923936 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. Liu J; Wang J; Wang T; Li D; Xi F; Wang J; Wang E Biosens Bioelectron; 2015 Mar; 65():281-6. PubMed ID: 25461170 [TBL] [Abstract][Full Text] [Related]
15. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Yang J; Strickler JR; Gunasekaran S Nanoscale; 2012 Aug; 4(15):4594-602. PubMed ID: 22706569 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case. Niu X; Li Y; Tang J; Hu Y; Zhao H; Lan M Biosens Bioelectron; 2014 Jan; 51():22-8. PubMed ID: 23920092 [TBL] [Abstract][Full Text] [Related]
17. An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide. Wu GH; Wu YF; Liu XW; Rong MC; Chen XM; Chen X Anal Chim Acta; 2012 Oct; 745():33-7. PubMed ID: 22938603 [TBL] [Abstract][Full Text] [Related]
18. Highly sensitive and selective dopamine biosensor based on a phenylethynyl ferrocene/graphene nanocomposite modified electrode. Liu M; Wang L; Deng J; Chen Q; Li Y; Zhang Y; Li H; Yao S Analyst; 2012 Oct; 137(19):4577-83. PubMed ID: 22900263 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal preparation and electrochemical sensing properties of TiO(2)-graphene nanocomposite. Fan Y; Lu HT; Liu JH; Yang CP; Jing QS; Zhang YX; Yang XK; Huang KJ Colloids Surf B Biointerfaces; 2011 Mar; 83(1):78-82. PubMed ID: 21111581 [TBL] [Abstract][Full Text] [Related]
20. Porous carbon-modified electrodes as highly selective and sensitive sensors for detection of dopamine. Veerakumar P; Madhu R; Chen SM; Hung CT; Tang PH; Wang CB; Liu SB Analyst; 2014 Oct; 139(19):4994-5000. PubMed ID: 25101356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]