These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2257498)

  • 1. Structure detection through automated covariance search.
    Winker S; Overbeek R; Woese CR; Olsen GJ; Pfluger N
    Comput Appl Biosci; 1990 Oct; 6(4):365-71. PubMed ID: 2257498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs.
    Branlant C; Krol A; Machatt MA; Pouyet J; Ebel JP; Edwards K; Kössel H
    Nucleic Acids Res; 1981 Sep; 9(17):4303-24. PubMed ID: 6170936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural constraints identified with covariation analysis in ribosomal RNA.
    Shang L; Xu W; Ozer S; Gutell RR
    PLoS One; 2012; 7(6):e39383. PubMed ID: 22724009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs.
    Pasquali S; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(4):1384-98. PubMed ID: 15745998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence and structural conservation in RNA ribose zippers.
    Tamura M; Holbrook SR
    J Mol Biol; 2002 Jul; 320(3):455-74. PubMed ID: 12096903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing.
    Tang TH; Rozhdestvensky TS; d'Orval BC; Bortolin ML; Huber H; Charpentier B; Branlant C; Bachellerie JP; Brosius J; Hüttenhofer A
    Nucleic Acids Res; 2002 Feb; 30(4):921-30. PubMed ID: 11842103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules.
    Leontis NB; Stombaugh J; Westhof E
    Biochimie; 2002 Sep; 84(9):961-73. PubMed ID: 12458088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lonepair triloop: a new motif in RNA structure.
    Lee JC; Cannone JJ; Gutell RR
    J Mol Biol; 2003 Jan; 325(1):65-83. PubMed ID: 12473452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The secondary structure of the protein L1 binding region of ribosomal 23S RNA. Homologies with putative secondary structures of the L11 mRNA and of a region of mitochondrial 16S rRNA.
    Branlant C; Krol A; Machatt A; Ebel JP
    Nucleic Acids Res; 1981 Jan; 9(2):293-307. PubMed ID: 7010313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The accuracy of ribosomal RNA comparative structure models.
    Gutell RR; Lee JC; Cannone JJ
    Curr Opin Struct Biol; 2002 Jun; 12(3):301-10. PubMed ID: 12127448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis.
    Okimoto R; Macfarlane JL; Wolstenholme DR
    J Mol Evol; 1994 Dec; 39(6):598-613. PubMed ID: 7528811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of a functional large ribosomal RNA with only three modified nucleotides.
    Sirum-Connolly K; Peltier JM; Crain PF; McCloskey JA; Mason TL
    Biochimie; 1995; 77(1-2):30-9. PubMed ID: 7541254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 23S ribosomal RNA higher-order structure of Pseudomonas cepacia and other prokaryotes.
    Höpfl P; Ludwig W; Schleifer KH; Larsen N
    Eur J Biochem; 1989 Nov; 185(2):355-64. PubMed ID: 2583187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the recognition sites on 16S and 23S rRNAs from E. coli for the formation of 16S-23S rRNA complex.
    Thanaraj TA; Kolaskar AS; Pandit MW
    J Biomol Struct Dyn; 1988 Dec; 6(3):587-92. PubMed ID: 3078239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of large rRNA sequences folded by a thermodynamic method.
    Fields DS; Gutell RR
    Fold Des; 1996; 1(6):419-30. PubMed ID: 9080188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher order interactions in 23s rRNA.
    Larsen N
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):5044-8. PubMed ID: 1375755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mitochondrial ribosomal RNA molecules of Aspergillus nidulans.
    Dyson NJ; Brown TA; Waring RB; Davies RW
    Gene; 1989 Jan; 75(1):109-18. PubMed ID: 2656406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of cDNA clones coding for mitochondrial 16S ribosomal RNA from the crustacean Artemia.
    Palmero I; Renart J; Sastre L
    Gene; 1988 Sep; 68(2):239-48. PubMed ID: 3220256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the three-dimensional locations of ribosomal RNA and proteins.
    Scheinman A; Atha T; Aguinaldo AM; Kahan L; Shankweiler G; Lake JA
    Biochimie; 1992 Apr; 74(4):307-17. PubMed ID: 1379075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of ribosomal RNA.
    Noller HF; Green R; Heilek G; Hoffarth V; Hüttenhofer A; Joseph S; Lee I; Lieberman K; Mankin A; Merryman C
    Biochem Cell Biol; 1995; 73(11-12):997-1009. PubMed ID: 8722015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.