BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22575338)

  • 1. Orientation-reversal VEP: comparison of phase and peak latencies in adults and infants.
    Lee J; Birtles D; Wattam-Bell J; Atkinson J; Braddick O
    Vision Res; 2012 Jun; 63():50-7. PubMed ID: 22575338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Latency measures of pattern-reversal VEP in adults and infants: different information from transient P1 response and steady-state phase.
    Lee J; Birtles D; Wattam-Bell J; Atkinson J; Braddick O
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1306-14. PubMed ID: 22266519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of visual motion processing: phase and peak latencies of direction-specific visual evoked potential.
    Lee J; Wattam-Bell J; Atkinson J; Braddick O
    J Vis; 2013 Mar; 13(4):. PubMed ID: 23479474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion- and orientation-specific cortical responses in infancy.
    Braddick O; Birtles D; Wattam-Bell J; Atkinson J
    Vision Res; 2005 Nov; 45(25-26):3169-79. PubMed ID: 16137739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the temporal properties of visual evoked potentials to luminance and colour contrast in infants.
    Morrone MC; Fiorentini A; Burr DC
    Vision Res; 1996 Oct; 36(19):3141-55. PubMed ID: 8917775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation of cyclopean visual evoked potential phase in preterm and full-term infants.
    Mikó-Baráth E; Markó K; Budai A; Török B; Kovacs I; Jandó G
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2574-83. PubMed ID: 24644050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation-reversal and phase-reversal visual evoked potentials in full-term infants with brain lesions: a longitudinal study.
    Mercuri E; Braddick O; Atkinson J; Cowan F; Anker S; Andrew R; Wattam-Bell J; Rutherford M; Counsell S; Dubowitz L
    Neuropediatrics; 1998 Aug; 29(4):169-74. PubMed ID: 9762691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses.
    Kubová Z; Kuba M; Juran J; Blakemore C
    Vision Res; 1996 Jan; 36(1):181-90. PubMed ID: 8746252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VEP maturation and visual acuity in infants and preschool children.
    Lenassi E; Likar K; Stirn-Kranjc B; Brecelj J
    Doc Ophthalmol; 2008 Sep; 117(2):111-20. PubMed ID: 18236091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental changes in the human visual system as reflected by the latency of the pattern reversal VEP.
    Moskowitz A; Sokol S
    Electroencephalogr Clin Neurophysiol; 1983 Jul; 56(1):1-15. PubMed ID: 6190626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalp-recorded oscillatory potentials evoked by transient pattern-reversal visual stimulation in man.
    Sannita WG; Lopez L; Piras C; Di Bon G
    Electroencephalogr Clin Neurophysiol; 1995 May; 96(3):206-18. PubMed ID: 7750446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast dependence of motion-onset and pattern-reversal evoked potentials.
    Kubová Z; Kuba M; Spekreijse H; Blakemore C
    Vision Res; 1995 Jan; 35(2):197-205. PubMed ID: 7839616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of motion sensitivity during the first year of life.
    Hamer RD; Norcia AM
    Vision Res; 1994 Sep; 34(18):2387-402. PubMed ID: 7975278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans.
    Jandó G; Mikó-Baráth E; Markó K; Hollódy K; Török B; Kovacs I
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):11049-52. PubMed ID: 22711824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern-reversal visual evoked potentials in infants: gender differences during early visual maturation.
    Malcolm CA; McCulloch DL; Shepherd AJ
    Dev Med Child Neurol; 2002 May; 44(5):345-51. PubMed ID: 12033721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transient and steady-state electroretinograms and visual evoked potentials to pattern and uniform-field stimulation in humans].
    Nakayama M
    Fukuoka Igaku Zasshi; 1994 Jul; 85(7):225-34. PubMed ID: 8070753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occlusion therapy improves phase-alignment of the cortical response in amblyopia.
    Kelly JP; Tarczy-Hornoch K; Herlihy E; Weiss AH
    Vision Res; 2015 Sep; 114():142-50. PubMed ID: 25529643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain stem auditory, pattern-reversal visual, and short-latency somatosensory evoked potentials: latencies in relation to age, sex, and brain and body size.
    Allison T; Wood CC; Goff WR
    Electroencephalogr Clin Neurophysiol; 1983 Jun; 55(6):619-36. PubMed ID: 6189692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging effect in pattern, motion and cognitive visual evoked potentials.
    Kuba M; Kremláček J; Langrová J; Kubová Z; Szanyi J; Vít F
    Vision Res; 2012 Jun; 62():9-16. PubMed ID: 22503557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.