These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 22575767)

  • 1. First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons.
    Gradhand M; Fedorov DV; Pientka F; Zahn P; Mertig I; Györffy BL
    J Phys Condens Matter; 2012 May; 24(21):213202. PubMed ID: 22575767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9681-91. PubMed ID: 16686519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic theory of non-adiabatic response in real and imaginary time.
    De Grandi C; Polkovnikov A; Sandvik AW
    J Phys Condens Matter; 2013 Oct; 25(40):404216. PubMed ID: 24025690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodissociation of HBr. 1. Electronic structure, photodissociation dynamics, and vector correlation coefficients.
    Smolin AG; Vasyutinskii OS; Balint-Kurti GG; Brown A
    J Phys Chem A; 2006 Apr; 110(16):5371-8. PubMed ID: 16623464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states.
    Shin D; Sato SA; Hübener H; De Giovannini U; Kim J; Park N; Rubio A
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4135-4140. PubMed ID: 30765519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Berry curvature of the Bogoliubov quasiparticle Bloch states in the unconventional superconductor Sr2RuO4.
    Gradhand M; Annett JF
    J Phys Condens Matter; 2014 Jul; 26(27):274205. PubMed ID: 24935869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self consistent tight binding model for dissociable water.
    Lin Y; Wynveen A; Halley JW; Curtiss LA; Redfern PC
    J Chem Phys; 2012 May; 136(17):174507. PubMed ID: 22583249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excess electron solvation in an imidazolium-based room-temperature ionic liquid revealed by ab initio molecular dynamics simulations.
    Wang Z; Zhang L; Chen X; Cukier RI; Bu Y
    J Phys Chem B; 2009 Jun; 113(24):8222-6. PubMed ID: 19469567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model potential approaches for describing the interaction of excess electrons with water clusters: incorporation of long-range correlation effects.
    Sommerfeld T; DeFusco A; Jordan KD
    J Phys Chem A; 2008 Nov; 112(44):11021-35. PubMed ID: 18959395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction.
    Xu XR; Cheng SG
    J Phys Condens Matter; 2013 Feb; 25(7):075304. PubMed ID: 23343589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum effects in biological electron transfer.
    de la Lande A; Babcock NS; Rezáč J; Lévy B; Sanders BC; Salahub DR
    Phys Chem Chem Phys; 2012 May; 14(17):5902-18. PubMed ID: 22434318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio theory for treating local electron excitations in molecules and its performance for computing optical properties.
    Miura M; Aoki Y
    J Comput Chem; 2009 Nov; 30(14):2213-30. PubMed ID: 19266480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating Berry curvature of SrRuO
    Tian D; Liu Z; Shen S; Li Z; Zhou Y; Liu H; Chen H; Yu P
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33911036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems.
    Smith PM; Kennett MP
    J Phys Condens Matter; 2012 Feb; 24(5):055601. PubMed ID: 22227599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Difficulties in the ab initio description of electron transport through spin filters.
    Kepenekian M; Gauyacq JP; Lorente N
    J Phys Condens Matter; 2014 Mar; 26(10):104203. PubMed ID: 24552973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions.
    Florens S; Freyn A; Roch N; Wernsdorfer W; Balestro F; Roura-Bas P; Aligia AA
    J Phys Condens Matter; 2011 Jun; 23(24):243202. PubMed ID: 21625035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontiers of organic conductors and superconductors.
    Saito G; Yoshida Y
    Top Curr Chem; 2012; 312():67-126. PubMed ID: 21952839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quantum anomalous Hall effect on a star lattice with spin-orbit coupling and an exchange field.
    Chen M; Wan S
    J Phys Condens Matter; 2012 Aug; 24(32):325502, 1-6. PubMed ID: 22789969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.