These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22576092)

  • 41. FRET by fluorescence polarization microscopy.
    Piston DW; Rizzo MA
    Methods Cell Biol; 2008; 85():415-30. PubMed ID: 18155473
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement.
    Wang S; Li KJ; Lin XW; Jiang CZ; Chen DH; Wu Q; Hua ZC
    J Microsc; 2012 Oct; 248(1):58-65. PubMed ID: 22971218
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving the spectral analysis of Fluorescence Resonance Energy Transfer in live cells: application to interferon receptors and Janus kinases.
    Krause CD; Digioia G; Izotova LS; Pestka S
    Cytokine; 2013 Oct; 64(1):272-85. PubMed ID: 23796694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous imaging of multiple cellular events using high-accuracy fluorescence polarization microscopy.
    Kim SY; Arai Y; Tani T; Takatsuka H; Saito Y; Kawashima T; Kawakami S; Miyawaki A; Nagai T
    Microscopy (Oxf); 2017 Apr; 66(2):110-119. PubMed ID: 28043995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues.
    Xu X; Soutto M; Xie Q; Servick S; Subramanian C; von Arnim AG; Johnson CH
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):10264-9. PubMed ID: 17551013
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Guide to Fluorescent Protein FRET Pairs.
    Bajar BT; Wang ES; Zhang S; Lin MZ; Chu J
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649177
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Use of FRET/FLIM to Study Proteins Interacting with Plant Receptor Kinases.
    Weidtkamp-Peters S; Stahl Y
    Methods Mol Biol; 2017; 1621():163-175. PubMed ID: 28567653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Forster Resonance Energy Transfer (FRET) to Visualize Protein-Protein Interactions in the Plant Cell.
    Gnanasekaran P; Pappu HR
    Methods Mol Biol; 2023; 2690():133-135. PubMed ID: 37450144
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy.
    Camborde L; Jauneau A; Brière C; Deslandes L; Dumas B; Gaulin E
    Nat Protoc; 2017 Sep; 12(9):1933-1950. PubMed ID: 28837131
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast Screening of Protein-Protein Interactions Using Förster Resonance Energy Transfer (FRET-) Based Fluorescence Plate Reader Assay in Live Cells.
    Durhan ST; Sezer EN; Son CD; Baloglu FK
    Appl Spectrosc; 2023 Mar; 77(3):292-302. PubMed ID: 36345563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-time detection of G protein activation using monomolecular Gγ FRET sensors.
    Candelario J; Chachisvilis M
    J Recept Signal Transduct Res; 2013; 33(1):63-72. PubMed ID: 23336397
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of Plant Material for Analysis of Protein-Nucleic Acid Interactions by FRET-FLIM.
    Escouboué M; Camborde L; Jauneau A; Gaulin E; Deslandes L
    Methods Mol Biol; 2019; 1991():69-77. PubMed ID: 31041764
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo monitoring of caspase activation using a fluorescence resonance energy transfer-based fluorescent probe.
    Yamaguchi Y; Kuranaga E; Nakajima Y; Koto A; Takemoto K; Miura M
    Methods Enzymol; 2014; 544():299-325. PubMed ID: 24974295
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorescence resonance energy transfer (FRET) applications using green fluorescent protein. Energy transfer to the endogenous chromophores of phycobilisome light-harvesting complexes.
    van Thor JJ; Hellingwerf KJ
    Methods Mol Biol; 2002; 183():101-19. PubMed ID: 12136747
    [No Abstract]   [Full Text] [Related]  

  • 55. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.
    Abraham BG; Santala V; Tkachenko NV; Karp M
    Anal Bioanal Chem; 2014 Nov; 406(28):7195-204. PubMed ID: 25224640
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of heteromerization of more than two proteins by sequential BRET-FRET.
    Carriba P; Navarro G; Ciruela F; Ferré S; Casadó V; Agnati L; Cortés A; Mallol J; Fuxe K; Canela EI; Lluís C; Franco R
    Nat Methods; 2008 Aug; 5(8):727-33. PubMed ID: 18587404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-color spectral FRET microscopy localizes three interacting proteins in living cells.
    Sun Y; Wallrabe H; Booker CF; Day RN; Periasamy A
    Biophys J; 2010 Aug; 99(4):1274-83. PubMed ID: 20713013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatiotemporal regulation of small GTPases as revealed by probes based on the principle of Förster Resonance Energy Transfer (FRET): Implications for signaling and pharmacology.
    Kiyokawa E; Aoki K; Nakamura T; Matsuda M
    Annu Rev Pharmacol Toxicol; 2011; 51():337-58. PubMed ID: 20936947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cautions in Measuring In Vivo Interactions Using FRET and BiFC in Nicotiana benthamiana.
    Tunc-Ozdemir M; Fu Y; Jones AM
    Methods Mol Biol; 2016; 1363():155-74. PubMed ID: 26577788
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robust evaluation of intermolecular FRET using a large Stokes shift fluorophore as a donor.
    Santana-Calvo C; Romero F; López-González I; Nishigaki T
    Biotechniques; 2018 Oct; 65(4):211-218. PubMed ID: 30284937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.