These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22576092)

  • 61. Robust evaluation of intermolecular FRET using a large Stokes shift fluorophore as a donor.
    Santana-Calvo C; Romero F; López-González I; Nishigaki T
    Biotechniques; 2018 Oct; 65(4):211-218. PubMed ID: 30284937
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells.
    Xu X; Brzostowski JA; Jin T
    Methods Mol Biol; 2006; 346():281-96. PubMed ID: 16957297
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Studying Nuclear Receptor Complexes in the Cellular Environment.
    Schaufele F
    Methods Mol Biol; 2016; 1443():79-104. PubMed ID: 27246335
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Development of a baculovirus-based fluorescence resonance energy transfer assay for measuring protein-protein interaction.
    Cheung TC; Hearn JP
    Eur J Biochem; 2003 Dec; 270(24):4973-81. PubMed ID: 14653823
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells.
    Goryashchenko AS; Khrenova MG; Savitsky AP
    Methods Appl Fluoresc; 2018 Jan; 6(2):022001. PubMed ID: 29185993
    [TBL] [Abstract][Full Text] [Related]  

  • 66. FRETting about the affinity of bimolecular protein-protein interactions.
    Lin T; Scott BL; Hoppe AD; Chakravarty S
    Protein Sci; 2018 Oct; 27(10):1850-1856. PubMed ID: 30052312
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mining and Quantifying In Vivo Molecular Interactions in Abiotic Stress Acclimation.
    Seidel T; Kirasi D
    Methods Mol Biol; 2017; 1631():87-107. PubMed ID: 28735392
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes.
    Krause CD; Izotova LS; Pestka S
    Cytokine; 2013 Oct; 64(1):298-309. PubMed ID: 23769803
    [TBL] [Abstract][Full Text] [Related]  

  • 69. N-way FRET microscopy of multiple protein-protein interactions in live cells.
    Hoppe AD; Scott BL; Welliver TP; Straight SW; Swanson JA
    PLoS One; 2013; 8(6):e64760. PubMed ID: 23762252
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spectroscopic approach for monitoring two-photon excited fluorescence resonance energy transfer from homodimers at the subcellular level.
    LaMorte VJ; Zoumi A; Tromberg BJ
    J Biomed Opt; 2003 Jul; 8(3):357-61. PubMed ID: 12880339
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A linker strategy for trans-FRET assay to determine activation intermediate of NEDDylation cascade.
    Malik-Chaudhry HK; Saavedra A; Liao J
    Biotechnol Bioeng; 2014 Jul; 111(7):1288-95. PubMed ID: 24415255
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy.
    Hirata E; Kiyokawa E
    Biophys J; 2016 Sep; 111(6):1103-1111. PubMed ID: 27475975
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Use of fluorescence resonance energy transfer to analyze oligomerization of G-protein-coupled receptors expressed in yeast.
    Overton MC; Blumer KJ
    Methods; 2002 Aug; 27(4):324-32. PubMed ID: 12217648
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Live cell imaging of mechanotransduction.
    Liu B; Kim TJ; Wang Y
    J R Soc Interface; 2010 Jun; 7 Suppl 3(Suppl 3):S365-75. PubMed ID: 20356874
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Live-Cell FRET Imaging of Phosphorylation-Dependent Caveolin-1 Switch.
    Zimnicka AM; Chen Z; Toth PT; Minshall RD
    Methods Mol Biol; 2020; 2169():71-80. PubMed ID: 32548820
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Homo-FRET Imaging to Study Protein-Protein Interaction and Complex Formation in Plants.
    Weidtkamp-Peters S; Rehwald S; Stahl Y
    Methods Mol Biol; 2022; 2379():197-208. PubMed ID: 35188664
    [TBL] [Abstract][Full Text] [Related]  

  • 77. FRET in a Synthetic Flavin- and Bilin-binding Protein.
    Simon J; Losi A; Zhao KH; Gärtner W
    Photochem Photobiol; 2017 Jul; 93(4):1057-1062. PubMed ID: 28055118
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Using FRET to analyse signals controlling cell adhesion and migration.
    Kemp-O'Brien K; Parsons M
    J Microsc; 2013 Sep; 251(3):270-8. PubMed ID: 23181665
    [TBL] [Abstract][Full Text] [Related]  

  • 79. FRET as a biomolecular research tool - understanding its potential while avoiding pitfalls.
    Algar WR; Hildebrandt N; Vogel SS; Medintz IL
    Nat Methods; 2019 Sep; 16(9):815-829. PubMed ID: 31471616
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Three Simultaneous Fluorescence Resonance Energy Transfer Processes and Structural Relaxation of Enhanced Yellow Fluorescent Protein Observed by Picosecond Time-Resolved Fluorescence Anisotropy.
    Tsubota H; Takayama A; Takeda Y; Yamada N; Hosoi H
    J Phys Chem B; 2021 Jul; 125(29):7997-8009. PubMed ID: 34259526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.