These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 22576105)

  • 1. Site-specific chemical protein conjugation using genetically encoded aldehyde tags.
    Rabuka D; Rush JS; deHart GW; Wu P; Bertozzi CR
    Nat Protoc; 2012 May; 7(6):1052-67. PubMed ID: 22576105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-Specific Bioconjugation Using SMARTag
    Liu J; Barfield RM; Rabuka D
    Methods Mol Biol; 2019; 2033():131-147. PubMed ID: 31332752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging Formylglycine-Generating Enzyme for Production of Site-Specifically Modified Bioconjugates.
    Barfield RM; Rabuka D
    Methods Mol Biol; 2018; 1728():3-16. PubMed ID: 29404988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction.
    Peng J; Alam S; Radhakrishnan K; Mariappan M; Rudolph MG; May C; Dierks T; von Figura K; Schmidt B
    FEBS J; 2015 Sep; 282(17):3262-74. PubMed ID: 26077311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper(II).
    York D; Baker J; Holder PG; Jones LC; Drake PM; Barfield RM; Bleck GT; Rabuka D
    BMC Biotechnol; 2016 Feb; 16():23. PubMed ID: 26911368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New aldehyde tag sequences identified by screening formylglycine generating enzymes in vitro and in vivo.
    Rush JS; Bertozzi CR
    J Am Chem Soc; 2008 Sep; 130(37):12240-1. PubMed ID: 18722427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion.
    Holder PG; Jones LC; Drake PM; Barfield RM; Bañas S; de Hart GW; Baker J; Rabuka D
    J Biol Chem; 2015 Jun; 290(25):15730-15745. PubMed ID: 25931126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes.
    Krüger T; Weiland S; Falck G; Gerlach M; Boschanski M; Alam S; Müller KM; Dierks T; Sewald N
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7245-7249. PubMed ID: 29579347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing genetically encoded aldehydes into proteins.
    Carrico IS; Carlson BL; Bertozzi CR
    Nat Chem Biol; 2007 Jun; 3(6):321-2. PubMed ID: 17450134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag.
    Wu P; Shui W; Carlson BL; Hu N; Rabuka D; Lee J; Bertozzi CR
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3000-5. PubMed ID: 19202059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.
    Roeser D; Preusser-Kunze A; Schmidt B; Gasow K; Wittmann JG; Dierks T; von Figura K; Rudolph MG
    Proc Natl Acad Sci U S A; 2006 Jan; 103(1):81-6. PubMed ID: 16368756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
    Mariappan M; Preusser-Kunze A; Balleininger M; Eiselt N; Schmidt B; Gande SL; Wenzel D; Dierks T; von Figura K
    J Biol Chem; 2005 Apr; 280(15):15173-9. PubMed ID: 15708861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-Specific Labeling of Proteins Using the Formylglycine-Generating Enzyme (FGE).
    Rupniewski I; Rabuka D
    Methods Mol Biol; 2019; 2012():63-81. PubMed ID: 31161504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoplasmic Expression of Nanobodies with Formylglycine Generating Enzyme Tag and Conversion to a Bio-Orthogonal Aldehyde Group.
    Li D; Peng Q; Huang C; Zang B; Ren J; Ji F; Muyldermans S; Jia L
    Methods Mol Biol; 2022; 2446():357-371. PubMed ID: 35157283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function and structure of a prokaryotic formylglycine-generating enzyme.
    Carlson BL; Ballister ER; Skordalakes E; King DS; Breidenbach MA; Gilmore SA; Berger JM; Bertozzi CR
    J Biol Chem; 2008 Jul; 283(29):20117-25. PubMed ID: 18390551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proprotein convertases process and thereby inactivate formylglycine-generating enzyme.
    Ennemann EC; Radhakrishnan K; Mariappan M; Wachs M; Pringle TH; Schmidt B; Dierks T
    J Biol Chem; 2013 Feb; 288(8):5828-39. PubMed ID: 23288839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
    Dierks T; Dickmanns A; Preusser-Kunze A; Schmidt B; Mariappan M; von Figura K; Ficner R; Rudolph MG
    Cell; 2005 May; 121(4):541-552. PubMed ID: 15907468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formylglycine-generating enzymes for site-specific bioconjugation.
    Krüger T; Dierks T; Sewald N
    Biol Chem; 2019 Feb; 400(3):289-297. PubMed ID: 30291781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum.
    Dierks T; Lecca MR; Schmidt B; von Figura K
    FEBS Lett; 1998 Feb; 423(1):61-5. PubMed ID: 9506842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The non-catalytic N-terminal extension of formylglycine-generating enzyme is required for its biological activity and retention in the endoplasmic reticulum.
    Mariappan M; Gande SL; Radhakrishnan K; Schmidt B; Dierks T; von Figura K
    J Biol Chem; 2008 Apr; 283(17):11556-64. PubMed ID: 18305113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.