BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 2257625)

  • 1. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation.
    Clos J; Westwood JT; Becker PB; Wilson S; Lambert K; Wu C
    Cell; 1990 Nov; 63(5):1085-97. PubMed ID: 2257625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans.
    Schuetz TJ; Gallo GJ; Sheldon L; Tempst P; Kingston RE
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6911-5. PubMed ID: 1871106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and expression of a human heat shock factor, HSF1.
    Rabindran SK; Giorgi G; Clos J; Wu C
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6906-10. PubMed ID: 1871105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain.
    Wisniewski J; Orosz A; Allada R; Wu C
    Nucleic Acids Res; 1996 Jan; 24(2):367-74. PubMed ID: 8628664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation.
    Sorger PK; Pelham HR
    Cell; 1988 Sep; 54(6):855-64. PubMed ID: 3044613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells.
    Hübel A; Lee JH; Wu C; Schöffl F
    Mol Gen Genet; 1995 Jul; 248(2):136-41. PubMed ID: 7651336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibody-mediated activation of Drosophila heat shock factor in vitro.
    Zimarino V; Wilson S; Wu C
    Science; 1990 Aug; 249(4968):546-9. PubMed ID: 2200124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of the DNA sequence-specific binding properties of heat shock transcription factor in Xenopus laevis embryos.
    Karn H; Ovsenek N; Heikkila JJ
    Biochem Cell Biol; 1992; 70(10-11):1006-13. PubMed ID: 1297327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae.
    Gallo GJ; Schuetz TJ; Kingston RE
    Mol Cell Biol; 1991 Jan; 11(1):281-8. PubMed ID: 1986225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions.
    Fernandes M; Xiao H; Lis JT
    Nucleic Acids Res; 1994 Jan; 22(2):167-73. PubMed ID: 8121800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual regulation of the Drosophila hsp26 promoter in vitro.
    Sandaltzopoulos R; Mitchelmore C; Bonte E; Wall G; Becker PB
    Nucleic Acids Res; 1995 Jul; 23(13):2479-87. PubMed ID: 7630725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing.
    Tanabe M; Sasai N; Nagata K; Liu XD; Liu PC; Thiele DJ; Nakai A
    J Biol Chem; 1999 Sep; 274(39):27845-56. PubMed ID: 10488131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability.
    Sarge KD; Zimarino V; Holm K; Wu C; Morimoto RI
    Genes Dev; 1991 Oct; 5(10):1902-11. PubMed ID: 1717345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway.
    Nakai A; Morimoto RI
    Mol Cell Biol; 1993 Apr; 13(4):1983-97. PubMed ID: 8455593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.