These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22576292)

  • 1. An energy-based conformer library for side chain optimization: improved prediction and adjustable sampling.
    Subramaniam S; Senes A
    Proteins; 2012 Aug; 80(9):2218-34. PubMed ID: 22576292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL).
    Subramaniam S; Senes A
    Proteins; 2014 Nov; 82(11):3177-87. PubMed ID: 25212195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of side-chain modeling in proteins with the self-consistent mean field theory method based on an analysis of the factors influencing prediction.
    Mendes J; Soares CM; Carrondo MA
    Biopolymers; 1999 Aug; 50(2):111-31. PubMed ID: 10380336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advantages of fine-grained side chain conformer libraries.
    Shetty RP; De Bakker PI; DePristo MA; Blundell TL
    Protein Eng; 2003 Dec; 16(12):963-9. PubMed ID: 14983076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved side-chain modeling for protein-protein docking.
    Wang C; Schueler-Furman O; Baker D
    Protein Sci; 2005 May; 14(5):1328-39. PubMed ID: 15802647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A "solvated rotamer" approach to modeling water-mediated hydrogen bonds at protein-protein interfaces.
    Jiang L; Kuhlman B; Kortemme T; Baker D
    Proteins; 2005 Mar; 58(4):893-904. PubMed ID: 15651050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the accuracy limits of prediction for side-chain conformations.
    Xiang Z; Honig B
    J Mol Biol; 2001 Aug; 311(2):421-30. PubMed ID: 11478870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library.
    Peterson RW; Dutton PL; Wand AJ
    Protein Sci; 2004 Mar; 13(3):735-51. PubMed ID: 14978310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a rotamer library for coarse-grained models in protein-folding simulations.
    Larriva M; Rey A
    J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GEM: a Gaussian Evolutionary Method for predicting protein side-chain conformations.
    Yang JM; Tsai CH; Hwang MJ; Tsai HK; Hwang JK; Kao CY
    Protein Sci; 2002 Aug; 11(8):1897-907. PubMed ID: 12142444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating knowledge-based biases into an energy-based side-chain modeling method: application to comparative modeling of protein structure.
    Mendes J; Nagarajaram HA; Soares CM; Blundell TL; Carrondo MA
    Biopolymers; 2001 Aug; 59(2):72-86. PubMed ID: 11373721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide models XLV: conformational properties of N-formyl-L-methioninamide and its relevance to methionine in proteins.
    Láng A; Csizmadia IG; Perczel A
    Proteins; 2005 Feb; 58(3):571-88. PubMed ID: 15616985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions.
    Spassov VZ; Yan L; Flook PK
    Protein Sci; 2007 Mar; 16(3):494-506. PubMed ID: 17242380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TSAR, a new graph-theoretical approach to computational modeling of protein side-chain flexibility: modeling of ionization properties of proteins.
    Stroganov OV; Novikov FN; Zeifman AA; Stroylov VS; Chilov GG
    Proteins; 2011 Sep; 79(9):2693-710. PubMed ID: 21769942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling correlated main-chain motions in proteins for flexible molecular recognition.
    Zavodszky MI; Lei M; Thorpe MF; Day AR; Kuhn LA
    Proteins; 2004 Nov; 57(2):243-61. PubMed ID: 15340912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization.
    Desmet J; Spriet J; Lasters I
    Proteins; 2002 Jul; 48(1):31-43. PubMed ID: 12012335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of off-rotamer protein side-chain conformations.
    Petrella RJ; Karplus M
    J Mol Biol; 2001 Oct; 312(5):1161-75. PubMed ID: 11580256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.