These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22576714)

  • 1. A triple-jaw actuated and sensorized instrument for grasping large organs during minimally invasive robotic surgery.
    Mirbagheri A; Farahmand F
    Int J Med Robot; 2013 Mar; 9(1):83-93. PubMed ID: 22576714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and preliminary in vivo validation of a robotic laparoscope holder for minimally invasive surgery.
    Herman B; Dehez B; Duy KT; Raucent B; Dombre E; Krut S
    Int J Med Robot; 2009 Sep; 5(3):319-26. PubMed ID: 19455594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and analysis of an actuated endoscopic grasper for manipulation of large body organs.
    Mirbagheri A; Farahmand F
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1230-3. PubMed ID: 21096122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.
    Ryu J; Choi J; Kim HC
    Artif Organs; 2013 Jan; 37(1):107-12. PubMed ID: 23043484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of an integrated master-slave robotic system for minimally invasive surgery.
    Li J; Zhou N; Wang S; Gao Y; Liu D
    Int J Med Robot; 2012 Mar; 8(1):77-84. PubMed ID: 21984343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using simulation to design control strategies for robotic no-scar surgery.
    De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M
    Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic system for no-scar gastrointestinal surgery.
    Phee SJ; Low SC; Sun ZL; Ho KY; Huang WM; Thant ZM
    Int J Med Robot; 2008 Mar; 4(1):15-22. PubMed ID: 18314917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved surgical instrument without coupled motions that can be used in robotic-assisted minimally invasive surgery.
    Mei F; Yili F; Bo P; Xudong Z
    Proc Inst Mech Eng H; 2012 Aug; 226(8):623-30. PubMed ID: 23057235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Haptic tracking control for minimally invasive robotic surgery].
    Xu Z; Song C; Wu W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):407-10. PubMed ID: 22826928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-assisted minimally invasive lung brachytherapy.
    Trejos AL; Lin AW; Pytel MP; Patel RV; Malthaner RA
    Int J Med Robot; 2007 Mar; 3():41-51. PubMed ID: 17441025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakthrough: robotic surgery. How robots are transforming minimally invasive surgical procedures.
    Harv Womens Health Watch; 2012 Nov; 20(3):1, 7. PubMed ID: 23326903
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of actuated and sensor integrated forceps for minimally invasive robotic surger.
    Kuebler B; Seibold U; Hirzinger G
    Int J Med Robot; 2005 Sep; 1(3):96-107. PubMed ID: 17518396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to do it: importance of left atrial side retraction in robotic and minimally invasive mitral valve surgery.
    Ishikawa N; Sun YS; Nifong LW; Watanabe G; Chitwood WR
    Heart Surg Forum; 2008; 11(5):E270-1. PubMed ID: 18948238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaze-contingent control for minimally invasive robotic surgery.
    Mylonas GP; Darzi A; Yang GZ
    Comput Aided Surg; 2006 Sep; 11(5):256-66. PubMed ID: 17127651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modular force-controlled robotic instrument for minimally invasive surgery - efficacy for being used in autonomous grasping against a variable pull force.
    Khadem SM; Behzadipour S; Mirbagheri A; Farahmand F
    Int J Med Robot; 2016 Dec; 12(4):620-633. PubMed ID: 26804489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Output control of da Vinci surgical system's surgical graspers.
    Johnson PJ; Schmidt DE; Duvvuri U
    J Surg Res; 2014 Jan; 186(1):56-62. PubMed ID: 23968806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conceptual design of a miniaturized hybrid local actuator for Minimally Invasive Robotic Surgery (MIRS) instruments.
    Saedi S; Mirbagheri A; Farahmand F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2140-3. PubMed ID: 22254761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lapabot: a compact telesurgical robot system for minimally invasive surgery: part I. System description.
    Choi J; Park JW; Kim DJ; Shin J; Park CY; Lee JC; Jo YH
    Minim Invasive Ther Allied Technol; 2012 May; 21(3):188-94. PubMed ID: 21745135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collision detection and untangling for surgical robotic manipulators.
    Morvan T; Martinsen M; Reimers M; Samset E; Elle OJ
    Int J Med Robot; 2009 Sep; 5(3):233-42. PubMed ID: 19367614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.