These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 22576878)
1. Identification of protein SUMOylation sites by mass spectrometry using combined microwave-assisted aspartic acid cleavage and tryptic digestion. Osula O; Swatkoski S; Cotter RJ J Mass Spectrom; 2012 May; 47(5):644-54. PubMed ID: 22576878 [TBL] [Abstract][Full Text] [Related]
2. Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Lamoliatte F; Bonneil E; Durette C; Caron-Lizotte O; Wildemann D; Zerweck J; Wenshuk H; Thibault P Mol Cell Proteomics; 2013 Sep; 12(9):2536-50. PubMed ID: 23750026 [TBL] [Abstract][Full Text] [Related]
3. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction. Cooper HJ; Tatham MH; Jaffray E; Heath JK; Lam TT; Marshall AG; Hay RT Anal Chem; 2005 Oct; 77(19):6310-9. PubMed ID: 16194093 [TBL] [Abstract][Full Text] [Related]
4. In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein: definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides. Chung TL; Hsiao HH; Yeh YY; Shia HL; Chen YL; Liang PH; Wang AH; Khoo KH; Shoei-Lung Li S J Biol Chem; 2004 Sep; 279(38):39653-62. PubMed ID: 15272016 [TBL] [Abstract][Full Text] [Related]
5. Proteomics strategies to identify SUMO targets and acceptor sites: a survey of RNA-binding proteins SUMOylation. Filosa G; Barabino SM; Bachi A Neuromolecular Med; 2013 Dec; 15(4):661-76. PubMed ID: 23979992 [TBL] [Abstract][Full Text] [Related]
6. A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program. Knuesel M; Cheung HT; Hamady M; Barthel KK; Liu X Mol Cell Proteomics; 2005 Oct; 4(10):1626-36. PubMed ID: 16020427 [TBL] [Abstract][Full Text] [Related]
8. A novel approach to the analysis of SUMOylation with the independent use of trypsin and elastase digestion followed by database searching utilising consecutive residue addition to lysine. Chicooree N; Griffiths JR; Connolly Y; Tan CT; Malliri A; Eyers CE; Smith DL Rapid Commun Mass Spectrom; 2013 Jan; 27(1):127-34. PubMed ID: 23239325 [TBL] [Abstract][Full Text] [Related]
9. In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. Blomster HA; Imanishi SY; Siimes J; Kastu J; Morrice NA; Eriksson JE; Sistonen L J Biol Chem; 2010 Jun; 285(25):19324-9. PubMed ID: 20388717 [TBL] [Abstract][Full Text] [Related]
10. A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Galisson F; Mahrouche L; Courcelles M; Bonneil E; Meloche S; Chelbi-Alix MK; Thibault P Mol Cell Proteomics; 2011 Feb; 10(2):M110.004796. PubMed ID: 21098080 [TBL] [Abstract][Full Text] [Related]
11. "ChopNSpice," a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides. Hsiao HH; Meulmeester E; Frank BT; Melchior F; Urlaub H Mol Cell Proteomics; 2009 Dec; 8(12):2664-75. PubMed ID: 19721078 [TBL] [Abstract][Full Text] [Related]
12. In vitro assay to determine SUMOylation sites on protein substrates. McManus FP; Altamirano CD; Thibault P Nat Protoc; 2016 Feb; 11(2):387-97. PubMed ID: 26820795 [TBL] [Abstract][Full Text] [Related]
13. A high-yield double-purification proteomics strategy for the identification of SUMO sites. Hendriks IA; Vertegaal AC Nat Protoc; 2016 Sep; 11(9):1630-49. PubMed ID: 27560170 [TBL] [Abstract][Full Text] [Related]
14. Modification of cardiac transcription factor Gata6 by SUMO. Chen H; Sun W; Zhu J; Yuan H; Chu M; Wen B Biochimie; 2020 Mar; 170():212-218. PubMed ID: 32017966 [TBL] [Abstract][Full Text] [Related]
15. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Lumpkin RJ; Gu H; Zhu Y; Leonard M; Ahmad AS; Clauser KR; Meyer JG; Bennett EJ; Komives EA Nat Commun; 2017 Oct; 8(1):1171. PubMed ID: 29079793 [TBL] [Abstract][Full Text] [Related]
16. Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Impens F; Radoshevich L; Cossart P; Ribet D Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12432-7. PubMed ID: 25114211 [TBL] [Abstract][Full Text] [Related]
17. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy. Kaur K; Park H; Pandey N; Azuma Y; De Guzman RN J Biol Chem; 2017 Jun; 292(24):10230-10238. PubMed ID: 28455449 [TBL] [Abstract][Full Text] [Related]
18. Proteome-wide identification of SUMO modification sites by mass spectrometry. Tammsalu T; Matic I; Jaffray EG; Ibrahim AF; Tatham MH; Hay RT Nat Protoc; 2015 Sep; 10(9):1374-88. PubMed ID: 26292070 [TBL] [Abstract][Full Text] [Related]
19. The strategies for identification and quantification of SUMOylation. Zhang Y; Li Y; Tang B; Zhang CY Chem Commun (Camb); 2017 Jun; 53(52):6989-6998. PubMed ID: 28589199 [TBL] [Abstract][Full Text] [Related]
20. Molecular mechanisms in SUMO conjugation. Varejão N; Lascorz J; Li Y; Reverter D Biochem Soc Trans; 2020 Feb; 48(1):123-135. PubMed ID: 31872228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]