These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22576902)

  • 41. A new MR-compatible loading device to study in vivo muscle damage development in rats due to compressive loading.
    Stekelenburg A; Oomens CW; Strijkers GJ; de Graaf L; Bader DL; Nicolay K
    Med Eng Phys; 2006 May; 28(4):331-8. PubMed ID: 16118060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional finite element analysis of the foot during standing--a material sensitivity study.
    Cheung JT; Zhang M; Leung AK; Fan YB
    J Biomech; 2005 May; 38(5):1045-54. PubMed ID: 15797586
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of perfusion on soft tissue mechanical properties: a computational model.
    Bilston LE
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):283-90. PubMed ID: 12186707
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accumulation of loading damage and unloading reperfusion injury--modeling of the propagation of deep tissue ulcers.
    Xiao DZ; Wu SY; Mak AF
    J Biomech; 2014 May; 47(7):1658-64. PubMed ID: 24657102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading.
    Loerakker S; Manders E; Strijkers GJ; Nicolay K; Baaijens FP; Bader DL; Oomens CW
    J Appl Physiol (1985); 2011 Oct; 111(4):1168-77. PubMed ID: 21757578
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of intermittent electrical stimulation on superficial pressure, tissue oxygenation, and discomfort levels for the prevention of deep tissue injury.
    Solis LR; Gyawali S; Seres P; Curtis CA; Chong SL; Thompson RB; Mushahwar VK
    Ann Biomed Eng; 2011 Feb; 39(2):649-63. PubMed ID: 21072594
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Compressive properties of passive skeletal muscle-the impact of precise sample geometry on parameter identification in inverse finite element analysis.
    Böl M; Kruse R; Ehret AE; Leichsenring K; Siebert T
    J Biomech; 2012 Oct; 45(15):2673-9. PubMed ID: 22954714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The free diffusion of macromolecules in tissue-engineered skeletal muscle subjected to large compression strains.
    Gefen A; Cornelissen LH; Gawlitta D; Bader DL; Oomens CW
    J Biomech; 2008; 41(4):845-53. PubMed ID: 18068175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Can loaded interface characteristics influence strain distributions in muscle adjacent to bony prominences?
    Oomens CW; Bressers OF; Bosboom EM; Bouten CV; Blader DL
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):171-80. PubMed ID: 12888429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Establishment of soft-tissue-injury model of high-voltage electrical burn and observation of its pathological changes.
    Jia-ke C; Li-gen L; Quan-wen G; Xiao-peng S; Hai-jun Z; Zhi-yong S; Zhi-qiang W; Cai Z
    Burns; 2009 Dec; 35(8):1158-64. PubMed ID: 19410374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach.
    Oldfield M; Dini D; Giordano G; Rodriguez Y Baena F
    Comput Methods Biomech Biomed Engin; 2013; 16(5):530-43. PubMed ID: 22229447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of Biowastes Released by Mechanically Damaged Muscle Cells on the Propagation of Deep Tissue Injury: A Multiphysics Study.
    Yao Y; Da Ong LX; Li X; Wan K; Mak AF
    Ann Biomed Eng; 2017 Mar; 45(3):761-774. PubMed ID: 27624658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prevention of pressure-induced deep tissue injury using intermittent electrical stimulation.
    Solis LR; Hallihan DP; Uwiera RR; Thompson RB; Pehowich ED; Mushahwar VK
    J Appl Physiol (1985); 2007 May; 102(5):1992-2001. PubMed ID: 17272408
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Establishment of a novel rat model for deep tissue injury deterioration.
    Sari Y; Minematsu T; Huang L; Noguchi H; Mori T; Nakagami G; Nagase T; Oe M; Sugama J; Yoshimura K; Sanada H
    Int Wound J; 2015 Apr; 12(2):202-9. PubMed ID: 23651215
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A review of deep tissue injury development, detection, and prevention: shear savvy.
    Gefen A; Farid KJ; Shaywitz I
    Ostomy Wound Manage; 2013 Feb; 59(2):26-35. PubMed ID: 23388395
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling mechanical strains and stresses in soft tissues of the shoulder during load carriage based on load-bearing open MRI.
    Hadid A; Epstein Y; Shabshin N; Gefen A
    J Appl Physiol (1985); 2012 Feb; 112(4):597-606. PubMed ID: 22134690
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonlinear elastic material property estimation of lower extremity residual limb tissues.
    Tönük E; Silver-Thorn MB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):43-53. PubMed ID: 12797725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.