These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22577488)

  • 1. Evolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human.
    Ostaszewski M; Eifes S; del Sol A
    PLoS One; 2012; 7(5):e36488. PubMed ID: 22577488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.
    Huang JY; Huang CW; Kao KC; Lai PY
    Gene; 2013 Apr; 518(1):35-41. PubMed ID: 23274654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary conservation of motif constituents in the yeast protein interaction network.
    Wuchty S; Oltvai ZN; Barabási AL
    Nat Genet; 2003 Oct; 35(2):176-9. PubMed ID: 12973352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary conservation and over-representation of functionally enriched network patterns in the yeast regulatory network.
    Meshi O; Shlomi T; Ruppin E
    BMC Syst Biol; 2007 Jan; 1():1. PubMed ID: 17408505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Functional Characterization of a Caenorhabditis elegans Genetic Interaction Network within Pathways.
    Boucher B; Lee AY; Hallett M; Jenna S
    PLoS Comput Biol; 2016 Feb; 12(2):e1004738. PubMed ID: 26871911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic identification of an integrative network module during senescence from time-series gene expression.
    Park C; Yun SJ; Ryu SJ; Lee S; Lee YS; Yoon Y; Park SC
    BMC Syst Biol; 2017 Mar; 11(1):36. PubMed ID: 28298218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Organization of the Interactome Using Dominating Sets: A Case Study on Cell Cycle Interaction Networks.
    Zheng H; Wang C; Wang H
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):282-289. PubMed ID: 28368806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.
    da Rocha EL; Ung CY; McGehee CD; Correia C; Li H
    Nucleic Acids Res; 2016 Jun; 44(10):e100. PubMed ID: 26975659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological interaction networks are conserved at the module level.
    Zinman GE; Zhong S; Bar-Joseph Z
    BMC Syst Biol; 2011 Aug; 5():134. PubMed ID: 21861884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network genomics.
    Ideker TE
    Ernst Schering Res Found Workshop; 2007; (61):89-115. PubMed ID: 17249498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of rifampin-regulated functional modules and related microRNAs in human hepatocytes based on the protein interaction network.
    Li J; Wang Y; Wang L; Dai X; Cong W; Feng W; Xu C; Deng Y; Wang Y; Skaar TC; Liang H; Liu Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):517. PubMed ID: 27557147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network hubs buffer environmental variation in Saccharomyces cerevisiae.
    Levy SF; Siegal ML
    PLoS Biol; 2008 Nov; 6(11):e264. PubMed ID: 18986213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Information flow analysis of interactome networks.
    Missiuro PV; Liu K; Zou L; Ross BC; Zhao G; Liu JS; Ge H
    PLoS Comput Biol; 2009 Apr; 5(4):e1000350. PubMed ID: 19503817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional 5' UTR motif discovery with LESMoN: Local Enrichment of Sequence Motifs in biological Networks.
    Lavallée-Adam M; Cloutier P; Coulombe B; Blanchette M
    Nucleic Acids Res; 2017 Oct; 45(18):10415-10427. PubMed ID: 28977652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating Conservation of the Cell-Cycle-Regulated Transcriptional Program in the Fungal Pathogen, Cryptococcus neoformans.
    Kelliher CM; Leman AR; Sierra CS; Haase SB
    PLoS Genet; 2016 Dec; 12(12):e1006453. PubMed ID: 27918582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.