These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22577983)

  • 1. Formation of circular crack pattern in deposition self-assembled by drying nanoparticle suspension.
    Jing G; Ma J
    J Phys Chem B; 2012 May; 116(21):6225-31. PubMed ID: 22577983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of particle shape anisotropy on crack formation in drying of colloidal suspension.
    Dugyala VR; Lama H; Satapathy DK; Basavaraj MG
    Sci Rep; 2016 Aug; 6():30708. PubMed ID: 27477261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible origin of the crack pattern in deposition films formed from a drying colloidal suspension.
    Ma J; Jing G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061406. PubMed ID: 23367949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface roughness induced cracks of the deposition film from drying colloidal suspension.
    Liu T; Luo H; Ma J; Xie W; Wang Y; Jing G
    Eur Phys J E Soft Matter; 2016 Feb; 39(2):24. PubMed ID: 26920527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternating crack propagation during directional drying.
    Gauthier G; Lazarus V; Pauchard L
    Langmuir; 2007 Apr; 23(9):4715-8. PubMed ID: 17394363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation mechanism of radial and circular cracks promoted by delamination in drying silica colloidal deposits.
    Liu X; Liu M; Sun Y; Yu S; Ni Y
    Phys Rev E; 2024 Sep; 110(3-1):034801. PubMed ID: 39425321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interplay of crack hopping, delamination and interface failure in drying nanoparticle films.
    Yang B; Sharp JS; Smith MI
    Sci Rep; 2016 Aug; 6():32296. PubMed ID: 27558989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of contraction stresses in dental composites by analysis of crack propagation in the matrix surrounding a cavity.
    Yamamoto T; Ferracane JL; Sakaguchi RL; Swain MV
    Dent Mater; 2009 Apr; 25(4):543-50. PubMed ID: 19100613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crack densification in drying colloidal suspensions.
    Lilin P; Ibrahim M; Bischofberger I
    Sci Adv; 2024 Sep; 10(37):eadp3746. PubMed ID: 39259804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of substrate constraint on crack pattern formation in thin films of colloidal polystyrene particles.
    Smith MI; Sharp JS
    Langmuir; 2011 Jul; 27(13):8009-17. PubMed ID: 21650173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scoping analyses of geochemical sealing of early cracks in a waste container and associated drip shield, Yucca Mountain, Nevada.
    Nicot JP
    J Contam Hydrol; 2005 Jun; 78(1-2):105-28. PubMed ID: 15949609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and Numerical Study on the Failure Characteristics of Brittle Solids with a Circular Hole and Internal Cracks.
    Le C; Ren X; Wang H; Yu S
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Surface Wettability on Crack Dynamics and Morphology of Colloidal Films.
    Ghosh UU; Chakraborty M; Bhandari AB; Chakraborty S; DasGupta S
    Langmuir; 2015 Jun; 31(22):6001-10. PubMed ID: 25973978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cracking in films of titanium dioxide nanoparticles with varying interaction strength.
    Mailer AG; Clegg PS
    J Colloid Interface Sci; 2014 Mar; 417():317-24. PubMed ID: 24407693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of nanoparticle shape on the drying of colloidal suspensions.
    Hodges CS; Ding Y; Biggs S
    J Colloid Interface Sci; 2010 Dec; 352(1):99-106. PubMed ID: 20825947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergy between the crack pattern and substrate elasticity in colloidal deposits.
    Lama H; Gogoi T; Basavaraj MG; Pauchard L; Satapathy DK
    Phys Rev E; 2021 Mar; 103(3-1):032602. PubMed ID: 33862708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional self-assemblies of silica nanoparticles formed using the "bubble deposition technique".
    Zhang X; Tang G; Yang S; Benattar JJ
    Langmuir; 2010 Nov; 26(22):16828-32. PubMed ID: 20919738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crack patterns of drying dense bacterial suspensions.
    Ma X; Liu Z; Zeng W; Lin T; Tian X; Cheng X
    Soft Matter; 2022 Jul; 18(28):5239-5248. PubMed ID: 35771131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of superhydrophobic surfaces of hierarchical structure of hybrid from nanoparticles and regular pillar-like pattern.
    Yeh KY; Cho KH; Chen LJ
    Langmuir; 2009 Dec; 25(24):14187-94. PubMed ID: 20560557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay of Consolidation Fronts and Cracks in Drying Colloidal Coatings and Its Application in Controlling Crack Pattern Formation.
    Niu Z; Gao H; Doi M; Zhou J; Xu Y
    Langmuir; 2022 Nov; 38(45):13880-13887. PubMed ID: 36377413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.