These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22578000)

  • 21. The effect of warfarin on the attachment of bone to hydroxyapatite-coated and uncoated porous implants.
    Callahan BC; Lisecki EJ; Banks RE; Dalton JE; Cook SD; Wolff JD
    J Bone Joint Surg Am; 1995 Feb; 77(2):225-30. PubMed ID: 7844128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of surface topology on the osseointegration of implant materials in trabecular bone.
    Wong M; Eulenberger J; Schenk R; Hunziker E
    J Biomed Mater Res; 1995 Dec; 29(12):1567-75. PubMed ID: 8600147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The bone-implant interface: a dynamic surface.
    Goldberg VM; Jinno T
    J Long Term Eff Med Implants; 1999; 9(1-2):11-21. PubMed ID: 10537583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of titanium coating on cobalt-chrome alloy in vitro and in vivo direct metal fabrication vs. plasma spraying.
    Suh D; Jo WL; Kim SC; Kim YS; Kwon SY; Lim YW
    J Orthop Surg Res; 2020 Nov; 15(1):564. PubMed ID: 33243258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osseointegration and biocompatibility of different metal implants--a comparative experimental investigation in sheep.
    Plecko M; Sievert C; Andermatt D; Frigg R; Kronen P; Klein K; Stübinger S; Nuss K; Bürki A; Ferguson S; Stoeckle U; von Rechenberg B
    BMC Musculoskelet Disord; 2012 Mar; 13():32. PubMed ID: 22400715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Metallurgical differentiation of cobalt-chromium alloys for implants].
    Holzwarth U; Thomas P; Kachler W; Göske J; Schuh A
    Orthopade; 2005 Oct; 34(10):1046-7, 1049-51. PubMed ID: 16091961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomaterial optimization in total disc arthroplasty.
    Hallab N; Link HD; McAfee PC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cementless implant fixation--toward improved reliability.
    Pilliar RM
    Orthop Clin North Am; 2005 Jan; 36(1):113-9. PubMed ID: 15542130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of pores created by laser superfinishing on osseointegration of titanium alloy implants.
    Stangl R; Pries A; Loos B; Müller M; Erben RG
    J Biomed Mater Res A; 2004 Jun; 69(3):444-53. PubMed ID: 15127391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strontium in the bone-implant interface.
    Vestermark MT
    Dan Med Bull; 2011 May; 58(5):B4286. PubMed ID: 21535993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of Staphylococcus aureus biofilm formation on cobalt-chrome and titanium-alloy spinal implants.
    Patel SS; Aruni W; Inceoglu S; Akpolat YT; Botimer GD; Cheng WK; Danisa OA
    J Clin Neurosci; 2016 Sep; 31():219-23. PubMed ID: 27396378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biology of grit-blasted titanium alloy implants.
    Goldberg VM; Stevenson S; Feighan J; Davy D
    Clin Orthop Relat Res; 1995 Oct; (319):122-9. PubMed ID: 7554621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collagen type-I leads to in vivo matrix mineralization and secondary stabilization of Mg-Zr-Ca alloy implants.
    Mushahary D; Wen C; Kumar JM; Lin J; Harishankar N; Hodgson P; Pande G; Li Y
    Colloids Surf B Biointerfaces; 2014 Oct; 122():719-728. PubMed ID: 25179112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation.
    Yamada M; Ueno T; Minamikawa H; Ikeda T; Nakagawa K; Ogawa T
    Clin Oral Implants Res; 2013 Sep; 24(9):991-1001. PubMed ID: 22726210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical implant fixation of CoCrMo coating inferior to titanium coating in a canine implant model.
    Jakobsen SS; Baas J; Jakobsen T; Soballe K
    J Biomed Mater Res A; 2010 Jul; 94(1):180-6. PubMed ID: 20128008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo corrosion of cobalt-chromium and titanium wear particles.
    Shahgaldi BF; Heatley FW; Dewar A; Corrin B
    J Bone Joint Surg Br; 1995 Nov; 77(6):962-6. PubMed ID: 7593115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of direct electrical current stimulation on the bone/porous metallic implant interface.
    Salman NN; Park JB
    Biomaterials; 1980 Oct; 1(4):209-13. PubMed ID: 7470576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control.
    Castellani C; Lindtner RA; Hausbrandt P; Tschegg E; Stanzl-Tschegg SE; Zanoni G; Beck S; Weinberg AM
    Acta Biomater; 2011 Jan; 7(1):432-40. PubMed ID: 20804867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Particulate titanium and cobalt-chrome metallic debris in failed total knee arthroplasty. A quantitative histologic analysis.
    La Budde JK; Orosz JF; Bonfiglio TA; Pellegrini VD
    J Arthroplasty; 1994 Jun; 9(3):291-304. PubMed ID: 8077978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retention characteristics of porous rooted Co-Cr-Mo alloy dental implants.
    Cook SD; Weinstein AM; Sander TA; Klawitter JJ
    Biomater Med Devices Artif Organs; 1982; 10(2):123-46. PubMed ID: 7139020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.