BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 2257839)

  • 21. The effect of obstacle conductivity and electric field on effective mobility and dispersion in electrophoretic transport: a volume averaging approach.
    Locke BR
    Electrophoresis; 2002 Aug; 23(16):2745-54. PubMed ID: 12210179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eigenmobilities in background electrolytes for capillary zone electrophoresis: III. Linear theory of electromigration.
    Stĕdrý M; Jaros M; Hruska V; Gas B
    Electrophoresis; 2004 Oct; 25(18-19):3071-9. PubMed ID: 15472980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous separation of high molecular weight compounds using a microliter volume free-flow electrophoresis microstructure.
    Raymond DE; Manz A; Widmer HM
    Anal Chem; 1996 Aug; 68(15):2515-22. PubMed ID: 21619197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster.
    Jaros M; Hruska V; Stedrý M; Zusková I; Gas B
    Electrophoresis; 2004 Oct; 25(18-19):3080-5. PubMed ID: 15472981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of the zone broadening contributions in free-flow electrophoresis.
    Mahmud S; Ramproshad S; Deb R; Dutta D
    Electrophoresis; 2023 Oct; 44(19-20):1519-1538. PubMed ID: 37548630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical and experimental study of the achievable separation power in resistive-glass atmospheric pressure ion mobility spectrometry.
    Kwasnik M; Fernández FM
    Rapid Commun Mass Spectrom; 2010 Jul; 24(13):1911-8. PubMed ID: 20533321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field amplified separation in capillary electrophoresis: a capillary electrophoresis mode.
    Erny GL; Cifuentes A
    Anal Chem; 2006 Nov; 78(21):7557-62. PubMed ID: 17073426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contributions to the Gaussian line broadening of the proxyl spin probe EPR spectrum due to magnetic-field modulation and unresolved proton hyperfine structure.
    Bales BL; Peric M; Lamy-Freund MT
    J Magn Reson; 1998 Jun; 132(2):279-86. PubMed ID: 9632554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analytical solution to transport in three-dimensional heterogeneous well capture zones.
    Indelman P; Lessoff SC; Dagan G
    J Contam Hydrol; 2006 Sep; 87(1-2):1-21. PubMed ID: 16844264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling the relation between the species retention factor and the C-term band broadening in pressure-driven and electrically driven flows through perfectly ordered 2-D chromatographic media.
    De Wilde D; Detobel F; Billen J; Deconinck J; Desmet G
    J Sep Sci; 2009 Dec; 32(23-24):4077-88. PubMed ID: 19921676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled diffusional release of dispersed solute drugs from biodegradable implants of various geometries.
    Collins R; Paul Z; Reynolds DB; Short RF; Wasuwanich S
    Biomed Sci Instrum; 1997; 33():137-42. PubMed ID: 9731349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peak broadening in capillary zone electrophoresis.
    Gas B; Stedrý M; Kenndler E
    Electrophoresis; 1997 Nov; 18(12-13):2123-33. PubMed ID: 9456027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Joule heating in packed capillaries used in capillary electrochromatography.
    Rathore AS; Reynolds KJ; Colón LA
    Electrophoresis; 2002 Sep; 23(17):2918-28. PubMed ID: 12207300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A numerical study of the assumptions underlying the calculation of the stationary zone mass transfer coefficient in the general plate height model of chromatography in two-dimensional pillar arrays.
    De Wilde D; Detobel F; Deconinck J; Desmet G
    J Chromatogr A; 2010 Mar; 1217(12):1942-9. PubMed ID: 20163796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separation efficiency in protein zone electrophoresis performed in capillaries of different diameters.
    St'astná M; Radko SP; Chrambach A
    Electrophoresis; 2000 Mar; 21(5):985-92. PubMed ID: 10768785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Estimation of the width of the transition zone from bilayer to solid phase].
    Medvinskiĭ AB; Berestovskiĭ GN
    Biofizika; 1980; 25(6):1045-7. PubMed ID: 7448216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eigenmobilities in background electrolytes for capillary zone electrophoresis: II. Eigenpeaks in univalent weak electrolytes.
    Stedrý M; Jaros M; Vceláková K; Gas B
    Electrophoresis; 2003 Jan; 24(3):536-47. PubMed ID: 12569543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of end effect-induced zone broadening in field-flow fractionation channels.
    Sant HJ; Kim JW; Gale BK
    Anal Chem; 2006 Dec; 78(23):7978-85. PubMed ID: 17134130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of Joule heating in dispersive mixing effects in electrophoretic cells: hydrodynamic considerations.
    Bosse MA; Arce P
    Electrophoresis; 2000 Mar; 21(5):1018-25. PubMed ID: 10768789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.